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Abstract
Biocontrol agents for the control of plant pathogenic microorganisms, especially fungi, are widely used to reduce the
health hazards of pesticides. These microbial antagonists not only control the growth of pathogens but also promote the
growth of plants. The development of pesticide-tolerant strains of biocontrol agents, with reduced doses of pesticides,
enables them to control more effectively than alone. The current study provides the development of tolerance in
Trichoderma harzianum with fungicides, viz. Topsin-M and Carbendazim reduce chemical use in the field and provide an
eco-friendly environment. Initially, Topsin-M and Carbendazim inhibit the growth of T. harzianum even @ 0.1 and 0.01
ppm, respectively, but after a gradual increase in the concentration of fungicides with repeated sub-culturing, tolerance
was developed in T. harzianum, and it is able to grow on media amended with Topsin-M and Carbendazim even @
10,000 ppm. Inhibition of pathogens more strongly with dual action, i.e., reducing the dose of pesticides with tolerant
strains of T. harzianum.
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Highlights
 Fungal biocontrol agents, which stop the growth of pathogenic fungi, are used to enhance the biocontrol activity and

synergistic effects with chemicals to inhibit the growth of pathogens.
 This biocontrol agent, i.e., T. harzianum, is used to create tolerance against fungicides Topsin-M and Carbendazim.
1. Introduction
Macrophomina phaseolina, a soil-borne pathogen, poses a significant threat to economically vital crops due to its
destructive root-infecting nature (Baker & Cooke 1974). It was also reported for the first time to cause charcoal rot in
adzuki beans (Vigna angularis) (Sun et al., 2016). The use of fungicides for the control of soil-borne diseases is costly and
also produces environmental and health hazards to users, and adversely affects the beneficial microorganisms in the soil
(Dłużniewska, 2003). Trichoderma harzianum is one of the known biocontrol agents used against several plant pathogens.
Trichoderma strains with practical antagonistic abilities are potential candidates for the biological control of plant diseases
(Papavizas, 1985; Manczinger, 1999). T. asperellum is also reported to be resistant to root rot diseases caused by Pythium
myriotylum and reduces 60% of the growth of the pathogen (Mbarga et al., 2012). Biocontrol agents can tolerate
agrochemicals successfully and also provide benefits to plants against diseases (Sun et al., 2019). Species of Trichoderma
reduce the severity of plant diseases. Trichoderma strains can interact directly with roots, increasing plant growth
potential, resistance to disease, and tolerance to abiotic stresses. (Hermosa, et al., 2012). The endophytic Trichoderma
strains provide less harm to the microbiome in soil. (Kovacs, et al., 2021). T. longibrachiatum HL167 showed maximum
salt tolerance effect and highest antifungal activity against F. oxysporum (Liu, et al., 2023). As a substitute for chemical
pesticides, Trichoderma fungi can also be used as an effective biocontrol agent against stem rot (S. rolfsii) in groundnut
(Hirpara et al., 2017)
The present research work describes the development of pesticide-tolerant strains of Trichoderma harzianum, which will
be more helpful in controlling plant pathogens with reduced doses of fungicides.
2. Materials and Methods
Tolerance to fungicides, i.e., Topsin-M and Carbendazim in Trichoderma harzianum was developed using the food poison
method (Grover & Moore, 1962; Mondal et al., 1995). Isolates of T. harzianum were exposed to gradually increasing
concentrations of the fungicides in the medium to develop tolerant strains. The initial concentration of Topsin-M and
Carbendazim used for T. harzianum was 0.01 ppm. PSA (potato sucrose agar) without fungicide serves as a control. A
5.00 mm inoculum disc of T. harzianum was cut from the margin of an actively growing colony and placed in the center
of each of the 3 replicate Petri plates. Petri plates were incubated at 28±2 ºC. Radial growth of the biocontrol agent was
observed daily. Mycelium from the colony of T. harzianum growing at 0.01 ppm concentration was transferred to a
medium containing Topsin-M @ 0.1 ppm repeatedly until good growth of T. harzianum was observed. The process was
repeated by gradually increasing the concentration of Topsin-M in the medium to 1, 10, 100, 1000, and 10,000 ppm.
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Trichoderma harzianum showed more sensitivity to fungicides; each time, a lower concentration of the fungicide was also
used while transferring the mycelium to the next higher concentration. The transfer was repeated until a good growth of T.
harzianum was observed at a given concentration.
3. Results and Discussion
3.1. Development of Tolerance in Trichoderma harzianum with Topsin-M
The growth of T. harzianum on potato sucrose agar containing Topsin-M at 0.01 ppm was not significantly different from
the control, with complete plate coverage observed after 96 hours. At 0.1 ppm, growth was slower, while at 1 ppm, it was
significantly reduced compared to the 0.1 ppm treatment. However, when T. harzianum was repeatedly sub-cultured from
1 ppm to both 0.1 ppm and 1 ppm treatments, its growth increased significantly. A similar trend was observed in
sequential transfers from 1 ppm to 0.1, 1, and 10 ppm; from 10 ppm to 1, 10, and 100 ppm; and from 100 ppm to 10, 100,
and 1000 ppm. No growth was observed when the fungus was transferred from 1000 ppm to 10,000 ppm. However, sub-
culturing from 100 ppm to 1000 ppm and subsequently from 1000 ppm to 10,000 ppm led to significant increases in T.
harzianum growth (Table 1).
Table 1. Development of tolerance in Trichoderma harzianum against Topsin-M
Concentrations

(ppm) Different intervals of Hours for proliferation (hrs) No. of times to transfer the
growth to next concentration.

24 48 72 96 120 144

(1*)
0

Mycelium
proliferation

in mm

1.32 3.41 7.02 9 9 9
0.01 0.68 1.24. 3.29 6.71 9 9
0.1 0 0.82 1.12 3.46 5.28 7.16
1 0 0.6 0.72 0.98 1.06 1.32
0 1.41 3.29 6.71 8.86 9 9

(1*)0.01 0.69 1.39 4.26 7.32 9 9
0.1 0.55 0.92 1.12 3.9 6.12 8.19
1 0 0.62 0.9 1.06 2.59 3.79
0 1.41 3.29 6.71 8.86 9 9

(2*)0.01 0.91 1.62 5.03 8.16 9 9
0.1 0.6 1.16 2.16 4.01 6.52 8.82
1 0.52 0.79 1.26 3.52 4.99 6.36
0

Mycelium
proliferation

in mm

1.69 3.16 7.19 9 9 9

(2*)0.1 0.98 1.99 5.52 8.26 9 9
1 0.55 0.9 1.99 3.62 5.71 7.41
10 0 0 0.55 0.67 0.9 1
0 1.38 4.41 6.92 8.69 9 9

(2*)0.1 1 3.14 5.71 8.3 9 9
1 0.58 1.2 2.26 4.59 6.17 8.52
10 0 0.59 0.9 1.16 2.56 3.2
0 1.46 5.29 8.18 9 9 9

(2*)0.1 1.2 3.42 6.01 8.38 9 9
1 0.81 1.42 3.21 5.16 6.8 8.71
10 0.56 0.95 1.52 2.81 4.16 6.02
0

Mycelium
proliferation

in mm

1.62 4.8 6.59 9 9 9

(3*)1 1.29 3.4 5.28 7.16 9 9
10 0.59 1.02 1.55 3 4.29 6.5
100 0 0 0.55 0.69 0.82 1
0 1.58 5.2 7.41 9 9 9

(1*)1 1.29 3.5 5.59 7.82 9 9
10 0.68 1.4 3.28 5.82 7 9
100 0 0.59 0.99 1.42 3.2 4.91
0 1.69 5.02 8.49 9 9 9

(1*)1 1.4 3.92 6.01 8.2 9 9
10 0.72 1.56 3.5 6 8.29 9
100 0.56 1.06 2.82 5.19 7 9
0 Mycelium

proliferation
in mm

1.71 5.21 7.8 9 9 9

(3*)10 0.8 1.72 3.82 6.52 8.5 9
100 0.6 1.16 3.19 5.5 7.2 9
1000 0.5 0.9 1.02 1.16 2.29 3
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0 1.68 4.92 7.91 9 9 9

(3*)10 0.88 1.9 4.01 7.12 9 9
100 0.66 1.28 3.29 5.82 7.59 9
1000 0.55 1 2.52 2.61 3.8 5.11
0 1.6 4.56 8.2 9 9 9

(3*)10 0.88 1.9 4.01 7.12 9 9
100 0.7 1.91 3.83 5.9 8.2 9
1000 0.59 1.52 2.26 4.16 6.29 8.8
0

Mycelium
proliferation

in mm

1.82 4.26 7.14 9 9 9

(4*)100 0.99 2.18 4.26 6.71 9 9
1000 0.6 1.79 2.9 4.82 7.16 9
10000 0 0 0 0 0 0
0 1.62 4.52 8.19 9 9 9

(3*)100 1.02 2.39 4.5 7.1 9 9
1000 0.6 1.8 3.19 4.87 7.42 9
10000 0 0.61 0.82 0.98 1.2 1.7
0 1.69 4.79 8.2 9 9 9

(3*)100 1.22 2.57 4.82 7.5 9 9
1000 0.78 1.89 3.27 5.12 7.71 9
10000 0.58 0.89 1.28 2.56 3.49 5.21

* = mycelium transferred to next conc.
The number indicates the number of sub-culturing after which this growth was achieved.

3.2.1. Development of Tolerance in Trichoderma harzianum with Carbendazim
The growth of T. harzianum on PSA containing Carbendazim @ 0.01 and 0.1 ppm was significantly less than that in
control. Growth was started after 48 hours at both concentrations. The growth of T. harzianum significantly increased
when it was repeatedly transferred from 0.1 ppm to 0.01 and 0.1 ppm treatments. A similar trend of T. harzianum growth
was observed when it was moved from 0.1 ppm to 1 and 10 ppm, from 1 ppm to 10, 100, and from 10 ppm to 100 and
1000 ppm treatments. Since inferior growth of T. harzianum was observed on medium containing Carbendazim @ 1000
ppm even after repeated culturing, the mycelium growing on 1000ppm plates was transferred to PSA containing
Carbendazim @ 100, 200, 300, 400, 500, 1000 ppm. Very little growth was observed on media containing Carbendazim
@ 200 ppm or more. However, repeated sub-culturing resulted in a gradual increase in growth at higher concentrations.
Then, the mycelium from 1000 ppm was transferred to medium with Carbendazim @ 500, 1000, 2000, 3000, 4000, and
5000 ppm. In another experiment, mycelium from 5000ppm treatment was transferred to medium with 500, 1000, 3000,
5000, 7000, and 9000 ppm and then from 9000ppm to medium with 100, 1000, 3000, 5000, 7000, 9000, and 10,000 ppm.
It was observed that after these experiments, T. harzianum developed tolerance to Carbendazim @ 10,000 ppm and the
growth decreased thereafter with an increase in concentration (Table 2).

Table 2. Development of tolerance in Trichoderma harzianum against Carbendazim.
Concentrations

(ppm) Different intervals of Hours for proliferation (hrs) No. of times to transfer the growth
to next concentration.

24 48 72 96 120 144

(2*)0

Mycelium
proliferation

in mm

1.28 4.26 7.16 9 9 9
0.01 0 0 0.55 0.62 0.65 0.79
0.1 0 0 0.5 0.59 0.61 0.65
0 1.3 4.62 6.81 9 9 9

(2*)0.01 0 0.62 0.81 1.56 2.21 3.19
0.1 0 0 0.59 0.62 0.69 0.75
0 1.42 5.26 8.19 9 9 9

(2*)0.01 0.69 0.97 1.61 3.542 4.99 6.21
0.1 0 0.61 0.82 0.99 1.2 1.92
0

Mycelium
proliferation

in mm

1.38 5.16 7.57 9 9 9
(2*)0.1 0.72 0.98 1.82 4.01 5.26 7.19

1 0 0 0.69 0.78 0.92 1.2
0 1.46 4.21 8.19 9 9 9

(1*)0.1 0.8 1.91 3.56 5.16 7 8.5
1 0 0 0.7 0.92 1.02 1.52
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0 1.46 5.26 7.91 9 9 9
(1*)0.1 0.82 2.19 3.86 5.82 7.71 9

1 0.62 0.91 1.06 1.82 2.69 3.25
0

Mycelium
proliferation

in mm

1.6 5.12 8.19 9 9 9
(3*)1 0 0 0.7 0.92 1.02 1.52

10 0 0 0 0.61 0.72 0.88
0 1.42 4.69 8.16 9 9 9

(3*)1 0.71 0.98 1.26 2.91 3.62 5.16
10 0 0.59 0.62 0.86 1.2 2.56
0 1.42 4.69 8.16 9 9 9

(2*)1 0.81 1.21 2.16 3.59 5.12 8.01
10 0 0.66 0.79 0.97 1.42 2.86
0

Mycelium
proliferation

in mm

1.51 4.56 8.19 9 9 9
(4*)10 0 0.81 1.02 2.21 4.41 7.29

100 0 0 0.6 0.81 0.99 1.42
0 1.6 4.19 8.2 9 9 9

(4*)10 0.86 0.99 1.21 3.26 4.91 7.72
100 0 0.59 0.86 1.02 2.19 3.51
0 1.49 4.26 7.92 9 9 9

(2*)10 0.9 1.06 1.67 4.26 5.91 8.26
100 0 0.6 0.91 1.06 2.69 4.19
0

Mycelium
proliferation

in mm

1.56 5.16 8.19 9 9 9

(5*)

100 0.97 1.91 2.17 5.28 7.46 8.86
200 0 0.67 0.82 0.98 1.25 1.46
300 0 0.59 0.66 0.79 0.96 1.02
400 0 0 0.56 0.72 0.86 0.95
500 0 0 0 0.68 0.8 0.9
1000 0 0 0 0.66 0.75 0.8
0 1.68 5.59 8.26 9 9 9

(5*)

100 1.06 2.18 3.69 5.82 8.19 9
200 0.81 1.86 2.81 3.86 5.28 7.86
300 0.69 1.18 1.82 2.19 4.17 6.18
400 0.58 0.85 1.08 1.86 3.59 5.86
500 0 0.75 0.95 1.23 2.16 4.56
1000 0 0.69 0.82 0.97 1.25 1.38
0

Mycelium
proliferation

in mm

1.52 5.38 8.16 9 9 9

(3*)

500 0.86 1.2 1.89 2.5 3.06 5.46
1000 0 0.76 0.96 1.26 1.96 2.57
2000 0 0.7 0.88 1.02 1.48 2
3000 0 0.66 0.82 0.98 1.18 1.59
4000 0 0.6 0.79 0.85 1.06 1.14
5000 0 0.55 0.65 0.78 0.98 1.1
0

Mycelium
proliferation

in mm

1.46 5.28 7.49 9 9 9

(5*)

500 0.92 1.28 1.86 3.48 5.46 8.19
1000 0.75 1.02 1.34 2.15 2.91 3.62
2000 0.69 0.95 1.12 1.86 2.46 3.25
3000 0.58 0.9 1.12 1.86 2.46 3.25
4000 0 0.73 0.89 1.18 1.79 2.5
5000 0 0.69 0.82 1.06 1.52 2.18
0

Mycelium
proliferation

in mm

1.46 5.28 7.49 9 9 9

(5*)

500 0.92 1.28 1.86 3.48 5.46 3.62
1000 0.75 1.02 1.34 2.15 2.91 3.62
2000 0.69 0.95 1.12 1.86 2.46 3.25
3000 0.58 0.9 1.08 1.42 1.99 3.01
4000 0 0.73 0.89 1.18 1.79 2.5
5000 0 0.69 0.82 1.06 1.52 2.18
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0

Mycelium
proliferation

in mm

1.56 4.86 7.82 9 9 9

(4*)

500 0.95 1.46 2.08 3.89 5.89 8.86
1000 0.86 1.18 1.82 2.48 3.16 4.19
3000 0.68 1.01 1.67 2.18 3.06 3.86
5000 0.6 0.82 1.08 1.8 2.42 3.19
7000 0.55 0.76 0.98 1.17 1.99 2.56
9000 0 0.68 0.82 1.06 1.76 2.19
0

Mycelium
proliferation

in mm

1.68 5.19 8.26 9 9 9

(4*)

1000 0.98 1.42 2.16 3.59 6.28 9
3000 0.82 1.19 1.97 3 5.56 7.16
5000 0.8 1.06 1.5 2.59 4.26 6.11
7000 0.69 0.96 1.4 2.16 3.2 5
9000 0.59 0.86 1.19 1.82 2.56 4.36
10000 0 0 0.92 1.06 2.19 3

* = mycelium transferred to next conc.
The number indicates the number of sub-culturing after which this growth was achieved.

Several Trichoderma species exhibit the potential to control root-infecting plant pathogens, including Macrophomina
phaseolina (Ramazan et al., 2014; Gajera et al., 2012), Fusarium spp. (Ramazan et al., 2014), and Rhizoctonia solani
(Ramazan et al., 2014; Asad et al., 2014). Experimental studies have shown that Trichoderma spp. reduce infections when
applied alongside Toxocara canis (a roundworm) eggs (Filho et al., 2017).
Researchers have successfully induced tolerance in biocontrol agents through UV irradiation of conidial suspensions
(Papavizas et al., 1982), while others achieved similar results by gradually increasing fungicide concentrations (Abd-El
Moity et al., 1982; Benyaqoub et al., 1995). Trichoderma species are among the most widely used biocontrol agents (Elad
& Kapat, 1999; Harman, 2000; Spiegel & Chet, 1998; Sun & Liu, 2006). Mutant strains of T. harzianum and T. atroviride
resistant to carbendazim and tebuconazole have also been developed using UV exposure (Hatvani et al., 2006).
A similar approach was employed in this study. Carbendazim inhibited all tested isolates at experimental concentrations,
leading to complete growth suppression (Linta et al., 2024). Initially, T. harzianum exhibited limited growth on media
supplemented with Topsin-M and carbendazim. However, gradual increases in fungicide concentrations induced tolerance
in T. harzianum. Observations revealed that tolerance emerged after 34 consecutive exposures to Topsin-M at 10,000 ppm
and after 57 exposures to carbendazim.
These findings validate earlier studies, demonstrating that enhanced carbendazim tolerance in mutant strains did not
compromise the mycoparasitic or plant growth-promoting activities of Trichoderma (Ramangouda et al., 2023). The
mutants retained the beneficial traits of their wild-type counterparts.
Conclusion
Based on observation, it was concluded that the tolerant strains of T. harzianum could potentially be applied in
conjunction with reduced doses of pesticides, such as Topsin-M and carbendazim, to manage plant pathogens like
Macrophomina phaseolina, and the tolerant strains of T. harzianum are able to control plant pathogens, especially M.
phaseolina. These strains reduce the use of chemicals in the field or crops and prevent hazardous effects on the
environment
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