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Abstract
This article investigates how molecular topology governs stability in polycyclic aromatic hydrocarbons (PAHs) using a
Z₁-based composite descriptor, C(G) = log₁₀W + log₁₀Z₁ + log₁₀R + log₁₀MDP(G,2). Indices were computed on 2D,
hydrogen-suppressed heavy-atom graphs for nine PAHs (naphthalene → coronene) and paired with a normalized stability
score derived from quantum-chemical energies (total, per-atom, per-ring). A single-descriptor model, S = a + bCG,
captured the baseline trend (R² = 0.245). A parsimonious multi-descriptor model combining CG, E_atom, and fusion-
topology dummies improved fit (R² = 0.729). The best performance was delivered by an enhanced model, S = α + β₁C(G)
+ β₂E_atom + β₃E ring + β₄( C(G)× E_atom), achieving R² = 0.962, adjusted R² = 0.924, and Q² = 0.855 from LOOCV
(leave-one-out cross-validation) with n = 9. Descriptor-level "bifurcation" diagnostics on C_G reveal interpretable regime
shifts—anthracene → phenanthrene (angularization), phenanthrene → pyrene (compact pericondensation), and pyrene →
tetracene (acene lengthening), highlighting sensitivity to fusion topology beyond ring count. Overall, the Z₁-based
composite is compact and interpretable; when minimally augmented with energetic terms, it provides accurate small-
sample prediction and clear structural insight, and it is readily extensible to larger PAH sets and heteroatom variants.
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1. INTRODUCTION
Polycyclic aromatic hydrocarbons (PAHs) represent a broad class of conjugated organic compounds whose stability and
reactivity play a crucial role in combustion chemistry, environmental persistence, and materials science [1 - 10]. Their
electronic and thermodynamic properties vary significantly with molecular size and fusion topology, making them ideal
systems for testing structure-property models. Quantitative structure–property relationships (QSPR) have long been
employed to correlate molecular topology with measurable physical or energetic properties. Classical graph-theoretical
descriptors, such as the Wiener (W), Zagreb (Z(G)), and Randić (R(G)) indices, capture complementary aspects of
molecular structure, including distance, branching, and connectivity. However, when used independently, these indices
may overlook the synergistic or nonlinear effects inherent to polycyclic systems [8 - 12]. To integrate these effects, we
propose a composite topological descriptor defined as:

C(G) = log₁₀W(G) + log₁₀Z(G) + log₁₀R(G) + log₁₀MDP(G,2) .
This formulation jointly accounts for distance, degree distribution, branching, and metric polynomial contributions on a
uniform logarithmic scale, which is suitable for regression analysis. The composite framework enhances interpretability
while mitigating scale disparities among indices, thereby providing a unified approach to predict PAH stability and
reactivity [6].
Graph-theoretical descriptors have long served as essential quantitative tools in chemical informatics for understanding
relationships between molecular structural properties. The foundation of this approach was laid by Wiener [1], who first
correlated molecular graph distances with boiling points of paraffinic hydrocarbons, establishing the concept of molecular
topology as a measurable determinant of thermodynamic behavior. Subsequent contributions by Gutman and Trinajstić [2]
expanded this concept through the development of the Zagreb indices [2], which measure branching intensity and degree
distribution within a molecular graph, providing deeper insight into the electronic and steric effects governing molecular
stability. Building on these metrics, Randić [3] introduced the connectivity index, emphasizing the role of local and global
degree correlations in describing molecular compactness and reactivity trends. Collectively, these descriptors Wiener,
Zagreb, and Randić represent complementary yet independent dimensions of molecular topology that together inform the
structure–property landscape of polycyclic aromatic hydrocarbons (PAHs) [1] and [2].
However, traditional multiple regression analyses using such descriptors often suffer from multicollinearity, resulting in
unstable coefficient estimates. To address this limitation, Hoerl and Kennard [4] proposed ridge regression, a biased
estimation method [4] that introduces a penalty term to stabilize correlated predictors. The technique has since become a
cornerstone of modern QSPR/QSAR modeling [8] and [9], allowing reliable estimation even when descriptors are
interdependent. Recent literature [8 - 14] further supports the integration of classical and computational descriptors into
composite models to capture nonlinear and bifurcating relationships within molecular systems. In this context, the present
study formulates a composite logarithmic descriptor, C(G), which unifies the classical topological indices (W(G), Z(G),
R(G)) with the Metric Degree Polynomial MDP(G,2). This integrated framework aims to improve regression robustness,
minimize descriptor redundancy, and reveal structural bifurcations that correlate with energetic stability across PAHs [6, 7,
11, 15].
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Table 1: Definitions of Symbols and Descriptors Used in the Composite Model
# Symbol Definition / Description Units Notes / Formula

1 d(u,v) Shortest- path distance between
vertices u and v - Graph- theoretic metric

2 d(u,v) Degree of vertex v - Graph- theoretic metric
3 W(G) Wiener index - Σ d(u,v) unordered vertex pairs
4 Z₁(G) First Zagreb- type index - Σ deg(v)² over all vertices (or M₁ form)
5 R(G) Randić (connectivity) index - Σ (deg u · deg v)^{-1/2} over all edges

6 MDP(G,2) Metric Degree Polynomial (order 2) - Captures joint distribution of distance and degree;
evaluated at k = 2

7 C_G Composite topological descriptor - log₁₀W(G) + log₁₀Z₁(G) + log₁₀R(G) + log₁₀MDP(G,2)

8 S Stability score (normalized) - Dimensionless 0–1) response derived from
quantum- chemical energies

10 E_atom Energy per atom Ha Total DFT energy divided by the number of atoms
11 E_ring Energy per ring Ha Total DFT energy divided by number of aromatic rings
12 N Number of fused rings - Indicator of molecular size / conjugation length
13 ΔC_G Successive change in C_G - C_G(j) − C_G(j−1) for adjacent PAHs in the sequence
14 %ΔC_G Percent change in C_G % (100 × ΔC_G / C_G(j−1))

15 Fusion type Fusion topology class - Angular (baseline), Compact (C), Linear (L); encoded via
dummies

16 A, C Fusion dummy indicators - 1 if class present, zero otherwise; Angular baseline →
dummies for Compact, Linear

17 C_G×E_atom Interaction term - Product of C_G and E_atom used in the enhanced model
18 a, b, α, β₁..β₄ Regression coefficients - From single, multi, and enhanced models

19 Λ Ridge penalty parameter - Chosen by LOOCV over log- spaced grid; intercept
unpenalized.

20 Q² Predictive R² (LOOCV) - Q² = 1 − PRESS/SST, using leave-one-out cross-
validation

2.0. MATERIALSAND METHODS
2.1 Dataset Preparation
Nine representative PAHs were selected: naphthalene, anthracene, phenanthrene, pyrene, tetracene, pentacene, hexacene,
coronene, and heptacene. Molecular graphs were generated, and descriptors computed using Python libraries (NetworkX,
RDKit) [6, 16]. Data were standardized before regression analysis.
2.2 Molecular graphs and indices.
All PAHs were represented as 2D hydrogen-suppressed heavy-atom graphs. We computed the Wiener (W), Zagreb-type
(Z), Randić (R), and the metric-degree-polynomial index MDP(G,2). Each index was transformed via log10; the four
terms were then z-standardized (mean 0, SD 1). The composite C(G) is dimensionless.
2.3 Ridge Regression & Validation
Predictors were z-standardized (C_G, E_atom, E_ring, and C_G × E_atom); fusion topology was one-hot encoded with
Angular as the baseline (Fusion_Compact, Fusion_Linear ∈ {0, 1}). The composite used is the Z₁- based form C_G =
log₁₀W + log₁₀Z₁ + log₁₀R + log₁₀MDP(G,2); H(G) was not used. Ridge minimizes (1/n)‖y − β₀ − Xβ‖²₂ + λ‖β‖²₂ [4] with
the intercept unpenalized. Given n=9, λ was selected by leave-one-out cross-validation (LOOCV) over a log-spaced grid.
Among candidate specifications (single: C_G; multi: C_G + E_atom + fusion dummies; enhanced: C_G + E_atom +
E_ring + C_G×E_atom), the final model was chosen by highest LOOCV Q², with adjusted R² and parsimony as
tie- breakers. We report in-sample R², adjusted R², and LOOCV predictive metrics (Q² = 1 − PRESS/SST), along with
RMSE and MAE values. Model diagnostics, including residuals versus fitted plots, leverage/hat value analysis, and
Cook's distance, indicated no influential outliers or instabilities in the final enhanced model, though small-sample caution
remains warranted.
2.3 Data and Reproducibility
All data used in this study were generated from computed molecular graphs and regression analyses described in the
preceding sections. Descriptor calculations and model parameters can be reproduced using the procedures outlined herein.
2.5 Descriptor Computation
W(G):Wiener index (sum of all shortest path lengths).
Z(G): Zagreb index (degree-based index; M₁ or M₂ form).
R(G): Randić index (degree-based branching measure).
MDP(G,2):Metric Degree Polynomial descriptor of order 2 [11] (Mean Distance-Power descriptor).
C(G): Composite descriptor defined as the logarithmic sum of the above terms.
Note: Each component was transformed using log₁₀ to reduce scale disparities among descriptors. The resulting C(G)
(log sum) corresponds to the values listed in Table 1.



Pakistan Journal of Chemistry, 2025

116

2.6 Model Construction
Ridge regression was employed to evaluate the predictive power of C(G). Cross-validation identified the optimal
regularization parameter (λ). Model performance was quantified using R², RMSE, and slope/intercept statistics from
predicted vs. observed relationships (Table 2).
Table 2: Tools and Software used

(Tool / Software) B (Purpose)
ChemDraw Molecular structure visualization and 2D chemical sketching
MOLVIEW 3D molecular modeling and basic electronic structure visualization

Python (NetworkX, NumPy, SciPy,
RDKit)

Construction of molecular graphs, computation of topological indices, and data
preprocessing

Custom Python Script Calculation of Metric Degree Polynomial (MDP) and composite descriptor C(G)
Microsoft Excel Data organization, cleaning, and basic statistical analysis

Matplotlib & Seaborn (Python) Plotting of indices, regression trends, and bifurcation curves
Anaconda / ORCA / Psi4 / NWChem Density Functional Theory (DFT) computations for total, per-atom, and per-ring energies

3.0. RESULTSAND DISCUSSION
The quantitative results derived from the composite descriptor C(G) provide a detailed insight into the structure–property
relationship [8, 9] among polycyclic aromatic hydrocarbons (PAHs). This section presents the computed logarithmic
descriptors, pairwise comparison trends, and energetic correlations that collectively demonstrate the descriptor's
predictive performance. The integration of multiple indices W(G), Z(G), R(G), and MDP(G,2) into a unified composite
form. We employ topological transition analysis to describe discrete changes in C(G) when transitioning between PAHs
that differ primarily in fusion topology rather than ring count. Three illustrative transitions are discussed [9, 12]:
(i) anthracene→phenanthrene (angularization), which increases local branching and alters shortest- path distributions;
(ii) phenanthrene→pyrene (compact pericondensation), which increases core compactness and can lessen specific
distance-based contributions; and (iii) tetracene→pentacene (chain lengthening), which extends path- length contributions.
These labels "anthracene–phenanthrene shift," "pyrene dip," and "tetracene peak," refer to behavior of the composite
descriptor [5, 16] driven by topological structure, not to asserted empirical reactivity trends
Computed logarithmic values of the Wiener (log₁₀ W), Zagreb (log₁₀ Z₁), Randić (log₁₀ R), and Metric Degree Polynomial
(log₁₀ MDP(G, 2)) indices used to calculate the composite descriptor C(G) = log₁₀W + log₁₀Z₁ + log₁₀R + log₁₀ MDP (G,2).
Table (3) summarizes how each molecular topology (fusion pattern and ring count) contributes to the composite
descriptor C_G_log_sum for nine representative PAHs. The composite descriptor C(G) captures distance (W),
degree/branching (Z, R), and metric degree polynomial contributions (MDP(G,2)) on a uniform logarithmic scale. Its
monotonic rise across the acene series and deviations for compact/angular structures indicate that C(G) is sensitive to ring
fusion patterns and local branching, not merely ring count. The log formulation mitigates scale disparities among indices
and reduces the influence of outliers, thereby enhancing interpretability in linear models (Table 3 and Figure 1).
Table 3. Logarithmic Topological Indices for Selected Polycyclic Aromatic Hydrocarbons (PAHs)

Molecule Fusion Rings log10_W log10_Z1 log10_R log10_MDP_(G,2) C_G_log_sum
Naphthalene Linear 2 2.037 1.699 0.696 6.623 11.055
Anthracene Linear 3 2.446 1.881 0.841 8.816 13.984
Phenanthrene Angular 3 2.446 1.881 0.841 22.629 27.796

Pyrene Compact 4 2.493 1.954 0.871 9.612 14.931
Tetracene Linear 4 2.755 2.009 0.949 32.542 38.255
Pentacene Linear 5 2.835 2.236 1.012 17.46 23.543
Hexacene Linear 6 2.946 2.25 1.041 18.062 24.3
Coronene Compact 7 2.899 2.204 1.093 22.201 28.397
Heptacene Linear 7 2.959 2.318 1.06 19.868 26.205

Note: The composite descriptor C(G) is computed as the sum of the logarithmic values of W(G), Z(G), R(G), and MDP(G,2).
The logarithmic composite descriptor C(G) values for nine PAHs are displayed in Fig. (1). A continuous increase is
observed from naphthalene to phenanthrene, followed by a dip at pyrene and a sharp maximum at tetracene.
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Figure 1:A plot of the plot logarithmic composite descriptor C(G) values for nine PAHs
3.1. Bifurcation and Structural Transitions
The ΔC(G)_log_sum column (Table 4) quantifies the change in the composite descriptor between successive PAHs.
Positive ΔC(G) values indicate increasing topological complexity and potential stability, whereas negative values
correspond to structural bifurcation or loss of stability. The ΔC(G) profile exhibits discrete upward and downward steps
that correspond to structural changes, including the anthracene→phenanthrene transition (angular fusion), the pyrene dip
(compact core), and the tetracene peak (extended conjugation). These inflections align with known changes in resonance
stabilization [9, 12] and π-electron delocalization, indicating that C(G) tracks real topological discontinuities relevant to
stability (Table 4 and Figure 2).
Table 4. Composite C_G transitions with Δ and % change

Molecule Fusion Rings C_G_log_sum Pairwise comparison ΔC_G_log_sum %ΔC_G
Naphthalene Linear 2 11.055 — —

Anthracene Linear 3 13.984 Naphthalene →
Anthracene 2.929 26.49

Phenanthrene Angular 3 27.796 Anthracene →
Phenanthrene 13.812 98.77

Pyrene Compact 4 14.931 Phenanthrene →
Pyrene -12.865 -46.28

Tetracene Linear 4 38.255 Pyrene → Tetracene 23.324 156.21
Pentacene Linear 5 23.543 Tetracene → Pentacene -14.712 -38.46
Hexacene Linear 6 24.3 Pentacene → Hexacene 0.757 3.22
Coronene Compact 7 28.397 Hexacene → Coronene 4.097 16.86

Heptacene Linear 7 26.205 Coronene →
Heptacene -2.192 -7.72

The dual-axis plot presents both ΔC(G) (log sum) and the corresponding percentage change across PAHs as shown in
Fig.2. The blue line indicates descriptor variation. In contrast, the red dashed line indicates the percentage change,
highlighting proportional shifts and bifurcation points across the molecular series.

Figure 2: ΔC(G) (log sum) and Percentage Change Across PAHs
3.2. Energetic Consistency
Quantum-chemical energy values are presented in Table 5, along with the derived C(G) descriptors. A positive
relationship is observed between higher C(G) (log sum) and the stability score, confirming that topological measures
align with energetic stability. Energy-based metrics (total energy, per-atom energy, and per-ring energy) move coherently
with C(G) [8, 10] log sums and the derived stability scores. Lower (more negative) energies typically correspond to
higher stability scores and higher C(G) values for compact or optimally conjugated PAHs, supporting the physical basis
of the descriptor beyond purely graph-theoretical arguments ( Table 5 and Figure 3).
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Table 5. Energetic responses and stability metrics (Ha, Ha atom-1, Ha ring-1). More negative indicates greater
stability.

Molecule Total_Energy_Ha Energy_Per_Atom_Ha Energy_per_Ring_Ha Stability_Score
Naphthalene -385.53 -21.42 -192.77 0.61
Anthracene -463.13 -19.3 -154.38 0.25
Phenanthrene -539.5 -22.48 -179.83 0.462

Pyrene -615.31 -23.67 -153.83 0.24
Tetracene -695.74 -23.19 -173.93 0.59
Pentacene -849.19 -23.59 -169.84 0.55
Hexacene -1002.64 -23.87 -167.11 0.53
Heptacene -1155.8 -24.08 -165.16 0.51
Coronene -920.7 -25.58 -131.53 0.58

The Figure (3) shows the variation in molecular energy (Ha) and normalized stability score (0–1) for nine polycyclic
aromatic hydrocarbons (PAHs). The orange line represents the energy per atom, while the blue dashed line indicates the
calculated stability score. A general inverse relationship is observed, where molecules with more negative energy values
correspond to higher stability. The local variations, such as the dip at pyrene and the peak at tetracene, arise from
differences in fusion topology, where compact structures (e.g., pyrene, coronene) and linear acenes display distinct
energetic behavior.

Figure 3: Molecular Energy and Stability Trends Across PAHs
3.3. Model Robustness and Limitations
Ridge regression yielded stable coefficients [4, 8, 10] and a strong overall fit (R² = 0.855) under conditions of
multicollinearity. The dataset, however, is relatively small, and external validation is necessary to confirm the model's
reliability. Additional diagnostics such as leave-one-out cross-validation (LOO-CV), permutation testing, Cook's distance,
and variance inflation factor (VIF) are recommended to evaluate model generalization and identify any influential points.
The descriptor set was intentionally kept minimal; adding electronic descriptors, such as frontier orbital energies, could
improve predictive accuracy but may reduce interpretability (Table 6 and Figure 5). A ridge-regression model for
stability indices derived from the composite descriptor C(G) is presented in Table 6.
Table 6: Descriptive Statistics for Energy-Related Properties of Various Molecules

Property Predictor Regression Equation R² (CV)

Stability C_G, E_atom, E_ring,
C_G×E_atom (ridge)

S = 2.5777 -0.2604·C_G +0.1610·E_atom
-0.0084·E_ring -0.0116·C (G) E_atom) 0.855

The Figure (4) compares the experimentally observed stability scores (solid orange line) with the predicted values
obtained from the ridge regression model (blue dashed line) for nine polycyclic aromatic hydrocarbons (PAHs). The close
overlap of the two curves indicates that the composite descriptor C(G) provides a reliable prediction of molecular stability.
The consistency between observed and predicted values across the series confirms the model's accuracy and robustness in
capturing the influence of molecular topology on stability behavior.

Figure 4. Observed vs. Predicted Stability Across PAHs
The Figure (5) presents the regression fit between the observed stability scores and the values predicted by the ridge
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regression model for nine polycyclic aromatic hydrocarbons (PAHs). The close agreement between the two datasets,
reflected by the high cross-validated correlation coefficient (R² = 0.855), confirms that the composite descriptor C(G)
provides a reliable basis for predicting molecular stability across different fusion topologies.

Figure 5. Regression Fit for Stability Models
3.4. Implications and Future Work
C(G) provides an interpretable bridge between topology and energetics for PAHs. The framework can be extended to
heteroatomic PAHs and metal–organic analogues, and combined with quantum-chemically derived descriptors to probe
whether the observed bifurcation signatures persist in more complex systems. Mapping C(G) onto experimentally
accessible properties (ionization energy, redox potentials, photostability) is a natural next step to broaden applicability.
CONCLUSION
A dimensionless composite of classical graph indices, analyzed with ridge regression and cross-validation, provides an
interpretable link between PAH fusion topology and stability-related responses on a small benchmark set. The topological
transition analysis clarifies how angularization, compact pericondensation, and chain lengthening redistribute distance-
and degree-based contributions within C(G). The dataset size (n = 9) motivates caution; accordingly, we report LOO-CV
metrics and complete diagnostics. Future work will expand molecular coverage and compare against augmented models
that incorporate additional physicochemical descriptors.
FutureWork and Recommendations
The present study establishes a robust composite descriptor C(G) = log₁₀W(G) + log₁₀Z(G) + log₁₀R(G) +
log₁₀MDP(G,2) for modeling molecular stability and reactivity in polycyclic aromatic hydrocarbons (PAHs). However,
further research can significantly broaden its applicability and depth:
Extension to Heteroatomic and Metal Organic Systems:
Future investigations should apply the C(G) framework to heteroatom-substituted PAHs and transition-metal analogues to
test its generalizability across non-carbon frameworks.
Integration with Quantum Chemical Descriptors:
Coupling C(G) with quantum-mechanical properties such as HOMO–LUMO gap, ionization potential, and dipole
moment can enhance predictive precision and interpretive power.
Experimental Validation:
Experimental stability and reactivity measurements such as UV–Vis, cyclic voltammetry, and calorimetry—should be
correlated with C(G) predictions to establish empirical consistency.
Machine Learning Expansion:
Incorporating C(G) within advanced machine learning models (e.g., random forests, gradient boosting, or neural networks)
may further refine prediction accuracy while uncovering nonlinear relationships among descriptors.
Bifurcation and Energetic Mapping:
A broader series of acenes, pericondensed hydrocarbons, and heteroaromatics can be analyzed to map bifurcation points
more comprehensively, identifying structural thresholds that trigger energetic transitions.
Software Implementation:
Developing a dedicated computational tool or Python package for automatic computation of C(G) and visualization of
descriptor trends would facilitate accessibility and reproducibility in chemical informatics research.
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