DOI: 10.15228/2022.v12.i03-4.p09

d-Ti₃C₂ /MoS₂ composite for Efficient Electrocatalytic Hydrogen Evolution

I. Ashraf , S. Ahmad , M. Iqbal*

Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.

*Corresponding author address: mudassir.iqbal@sns.nust.edu.pk

Abstract

MXenes, a two-dimensional material, is an emerging research area. Herein, a $d-Ti_3C_2$ MXene was combined with MoS₂ nanoballs to achieve better electrocatalytic performance for hydrogen evolution reaction (HER). The synthesized d-Ti₃C₂/MoS₂ composite showed outstanding kinetic metrics for electrocatalytic HER, exhibiting a low overpotential of 45 mV at a current density of 10 mA/cm² compared to $d-Ti_3C_2$ MXene (180 mV) and MoS₂ nanoballs (140 mV). Long-term stability was verified for 24 h with a negligible loss in current density. The high electrocatalytic performance of d-Ti₃C₂/MoS₂ composite is believed to be originated from a synergistic effect between $d-Ti_3C_2$ MXene and MoS₂ nanoballs as well as high metallic conductivity of $d-Ti_3C_2$ MXene. It was concluded that the proposed synthesized composite provides insights for fabricating new cost-effective non-noble metal-based electrocatalysts with efficient water-splitting. *Keywords:* MXenes, d-Ti3C2 /MoS2 composite, electrocatalytic performance, cost-effective, water-splitting

1. INTRODUCTION

Hydrogen energy is an efficient energy source. The most common way to obtain hydrogen is water electrolysis, which is abundant in nature. Noble metals such as Platinum (Pt) have shown good electrocatalytic activity in HER [1]. But its large-scale application is limited due to its high price [2, 3]. To find an inexpensive and highly active HER electrocatalyst has become an urgent need. Hydrogen (H₂) production, which is directly generated by utilizing semiconducting electrocatalysts, could provide an environmentally friendly approach to solving global issues. Transition metal sulfides such as NiS, MoS₂, WS₂, and CoS₂ have attracted considerable attention as an electrocatalyst for HER because of their low cost and excellent electrocatalytic properties [4-6]. MoS₂ in bulk form is a poor catalyst, whereas MoS₂ in nano form is a suitable electrocatalyst [7]. Many efforts have been made to synthesize composites of MoS₂ to attain excellent HER activity [8, 9]. There are many ways to improve the catalytic activity of MoS₂ such as Co, Ni, and Fe were added previously to enhance intrinsic activity [9-11], as well as highly conducting materials can be added to improve electrical contact, including carbon nanotubes (CNTs), graphene oxide, carbon nanofibers, MXene [12-16], etc.

MXenes are two-dimensional (2D) metal carbides, nitrides, or carbonitrides derived from their MAX phase precursor, by selecting the removal of A. The general formula for MXene is $M_{n+1}X_nT_x$. Where M represents transition metal, X represents C/N and T_x represents surface terminations such as =O, -OH, F [17]. MXenes have attracted researchers because of their versatile properties, such as electrical conductivity, rate capability, surface area, outstanding internal resistance etc. [18]. They are explored for various applications such as environmental, energy, catalysis, electrocatalytic activity; as a result, the charge transfer rate is increased. Among MXenes, many efforts have been made for Ti₃C₂ MXene, as it is considered a potential to replace Pt in electrocatalytic reactions [22]. The charge transfer between Ti₃C₂ MXene to the active sites is more outstanding than most semiconducting catalysts. Moreover, the H adsorption energy on the surface of MXene is close to 0, thus making it the best among noble metal-free catalysts for application in HER [23]. Water splitting is an essential reaction in fuel cells, solar energy and catalysis, byotoelectrolysis, solar light splitting etc.

In the present work, we synthesized $d-Ti_3C_2/MoS_2$ composite by hydrothermal approach. MoS₂ was newly synthesized by a hydrothermal approach that has not been reported yet, whereas $d-Ti_3C_2$ MXene was synthesized from its MAX (Ti_3SiC_2) phase precursor by wet chemical etching. The resulting composite showed outstanding HER activity with 45 mV overpotential and long-term stability and efficient water-splitting. This work can be proved useful to renewably generate hydrogen fuel from water. This is a prospective method to produce environmentally friendly hydrogen fuel.

2. Materials and Methods

2.1. Synthesis of d-Ti₃C₂ MXene

 Ti_3C_2 MXene was synthesized by one of the reported method [24] by etching of silicon layer from Ti_3SiC_2 MAX phase precursor using HF as an etching source. At first, the mixture of HF/H₂O₂ was prepared by the addition of 2.5 mL H₂O₂ in 22 mL of HF in polypropylene bottle. The solution mixture was stirred in an ice bath to maintain a temperature at 0 °C for about 30 minutes. Then 1.5 g of Ti_3SiC_2 was slowly added, and stirred the mixture for 1.5 h. The polypropylene tube was shifted to a pre-heated oil bath at 40 °C for 45 h. This acidic solution was washed with deionized water and ethanol about 5 times to maintain neutral pH using a centrifuge machine. The black color product was obtained and dried in a vacuum oven at 50 °C for 24 h. To obtain a delaminated MXene, 1 mL of TMAOH was added to Ti_3C_2 MXene

(0.5 g) and diluted with 10 mL DI H₂O. The solution was stirred for 24 h at room temperature. The washing was carried out by the same process as discussed above for Ti₃C₂ MXene. The product obtained was dried in a vacuum oven at 50 °C for 24 h.

2.2. Synthesis of MoS₂ nanoballs

Ammonium heptamolybedate $(NH_4)_6Mo_7O_{24}.4H_2O$ was added to the deionized (DI) water and was stirred until a uniform suspension was attained. Then, hydrazine hydrate $(N_2H_4.H_2O)$ was added to the solution mixture followed by magnetic stirring for half hour. A Sodium bisulfide (Na_2S) was added to the mixture as a sulfur source. After uniform mixing 10 mL of nitic acid (HNO₃) was added and stirred for 1 hour. After formation of homogeneous mixture, this solution was transferred to the Teflon-lined steel autoclave and shifted to heating oven for 12 h at 160 °C. The solution was then cooled down at room temperature in order to perform washing by using DI H₂O and ethanol. The sample was washed for about 5 cycles until neutral pH was attained at 5000 rpm. After washing, the sample was dried in a vacuum oven at 60 °C for 12 h.

2.3. Synthesis of d-Ti₃C₂/MoS₂

Primarily, 0.25 mmol of d-Ti₃C₂ MXene was stirred in 20 mL DI water for 10 min to form a good suspension. Similarly, 0.25 mmol of MoS₂ nanoballs were stirred in 20 ml DI water for 20 min. Then the mixture of d-Ti₃C₂ MXene was transferred to the MoS₂ nanoballs solution, and the resulting mixture was sonicated for 10 minutes. This suspension was transferred to a Teflon-lined steel autoclave at 120 °C for 12 h. The mixture was cooled at room temperature and then washed with DI water at 3500 rpm via centrifugation for 3 cycles. After washing, the black-colored sample was dried in a vacuum oven at 60 °C for 24 h. The scheme for synthesis of d-Ti₃C₂/MoS₂ is shown in **Figure 1**.

Figure 1. Scheme for synthesis of $d-Ti_3C_2/MoS_2$

2.4. Material Characterization

XRD for all the samples was measured by Malvern Panalytical Empyrean Raman spectroscopy, carried out by URaman-532 TEC-Ci. The structure morphology was confirmed by scanning electron microscopy (SEM) using VEGA3 TESCAN and Energy-dispersive X-ray spectroscopy (EDX) by Oxford Instrument X-act. X-ray Photoelectron Spectroscopy (XPS) was carried out by Thermo K Alpha with a monochromatic beam of Aluminum K Alpha X Rays.

2.5. Electrochemical measurement

The electrochemical tests for HER were done using Gamry Instruments equipped with three electrode systems. Nickel foam was used as a working electrode with active material. The loading amount of active material was 2 mg. The working electrode was prepared by adding 2 drops of Nafion binder to the mixture of active material and ethanol. The slurry was drop cast onto Ni foam and dried in a vacuum oven for 12 h at 50 °C. Pt wire was used as a counter electrode, while Ag/AgCl as a reference electrode. IM KOH solution was used to analyze catalytic activities at 10 mVs⁻¹. Similarly, for further calculation Reversible hydrogen electrode (RHE) was used which was achieved by using the following Nernst Equation:

$$E_{RHE} = E_{Ag/AgCl} + 0.059 pH + 0.1976.$$

Electrochemical Impedance Spectroscopy (EIS) was accomplished in the frequency range of 0.1 Hz-10 kHz, by providing a 10 mV alternating voltage amplitude. Furthermore, chronoamperometry measurement was used to check the stability of as prepared hybrid nanostructure.

3. RESULTS AND DISCUSSIONS

3.1. X-ray diffraction (XRD) analysis

XRD validated the crystalline structure of all prepared electrodes. **Figure 2** shows XRD pattern of Ti_3SiC_2 , $d-Ti_3C_2$ MXene, MoS_2 nanoballs, $d-Ti_3C_2/MoS_2$. The diffraction peaks appeared at 9.5°, 19°, 29° and 39° corresponding to (002), (004), (006), and (008) lanes of Ti_3SiC_2 , respectively. It is seen that the crystallinity of MAX phase is decreased after treatment with HF/H₂O₂ mixture. In the XRD pattern of $d-Ti_3C_2$ MXene, the peak at 9.5° decreased and broadened to a

Iqbal et al.,2022

lower angle due to larger d-spacing. The most intense and sharp peak at about 39° vanishes which indicates that Si layer is successfully removed [281]. In the XRD pattern of MoS₂ nanoballs, the high intense diffraction peak of (002) plane indicates good crystallinity. Similarly, the peaks at the (100) and (110) planes demonstrate the existence of MoS₂ nanoballs. No signal of the impurity phase was detected, indicating the high purity of MoS₂ nanoballs. Notably, diffraction peaks of d-Ti₃C₂ and MoS₂ nanoballs are observed in the XRD pattern of d-Ti₃C₂/MoS₂, which indicates successful synthesis. The c-lattice parameter (c-lp) calculated for d-Ti₃C₂ MXene was 25 Å, whereas for d-Ti₃C₂/MoS₂ 27 Å. The increase in the c-lp of d- d-Ti₃C₂/MoS₂ nanoballs in d-Ti₃C₂ MXene.

Figure 2. XRD pattern of a) Ti₃SiC₂, b) d-Ti₃C₂, c) MoS₂ nanoballs, d) d-Ti₃C₂/MoS₂

3.2. X-ray photoelectron (XPS) spectroscopy

Figure 3a shows the X-ray photoelectron (XPS) spectroscopy analysis of $d-Ti_3C_2/MoS_2$ nanocomposite. From the survey spectra, it can be seen that Ti, C, O, Mo, S, and F elements were detected. In the Ti2p spectrum, three fitting peaks at 454.8, 458.6, and 465.3 eV binding energies correspond to Ti-C and Ti-O bonding as shown in **Figure 3b**. In **Figure 3c** the largest C1s signal (284.8 eV) corresponds to Ti-C bond. In the Mo3d spectrum, the three fitting peaks at 232, 228.6, and 226 eV were assigned to Mo3d3/2, Mo3d5/2, and S2s as represented in **Figure 3d**. The S2p1/2 and S2p3/2 peaks were observed in the S2p spectrum at 162.4 and 161.3 eV shown in **Figure 3e**.

Figure 3a) XPS survey spectra of d-Ti₃C₂/MoS₂, XPS analysis of b) Ti 2p, c) C 1s, d) Mo 3d, e) S 2p

3.3. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analysis

SEM analysis was performed to study the morphology and homogeneity of the prepared nanostructures, **Figure 4a-c** shows SEM images of d-Ti₃C₂ MXene, MoS₂ nanoballs, and Ti₃C₂/MoS₂ nanocomposite at 2µm. **Figure 4a** shows the multilayered Ti3C2 MXene at 2µm, indicating that silicon atoms are successfully removed, and an extension of distance between layers occurred. **Figure 4b** shows SEM images of MoS₂ nanoballs, which indicates the formation of large-scale, dense, and uniform nanoballs of MoS₂ that are interconnected. Similarly, in the SEM image of d-Ti₃C₂/MoS₂ nanocomposite, as shown in **Figure 4c**, Ti₃C₂ nanosheets and uniform anchoring of MoS₂ nanoballs on the MXene layers are observed, which indicates successful synthesis of our nanocomposite. This arrangement increases the composite material's surface area, providing HER multi-catalytic active sites. The EDX spectrum shows the presence of Ti, C, Mo and S elements in the synthesized nanocomposite, as shown in **Figure 4d**. The intense signal of Mo and S indicates that MoS₂ nanoballs are successfully incorporated into Ti₃C₂ MXene analysis.

Figure 3. SEM analysis of a) $d-Ti_3C_2$, b) MoS_2 nanoballs, c) $d-Ti_3C_2/MoS_2 d$) EDX spectrum $d-Ti_3C_2/MoS_2$ 3.4. Electrochemical measurements

An electrolyte of 1M KOH was used for electrochemical measurements. We studied HER activity to analyze the electrocatalytic performance of Ti3C2 MXene, MoS2 nanoballs, and d-Ti3C2/MoS2 nanocomposite. **Figure 5a** shows comparison polarization curves of d-Ti₃C₂ MXene, MoS₂ nanoballs, and d-Ti₃C₂/MoS₂ nanocomposite for HER. As expected, all samples could efficiently drive H₂ evolution under negative bias. d-Ti₃C₂/MoS₂ nanocomposite displays a very low overpotential of 45 mV at 10 mA cm⁻² current density, while MoS₂ nanoballs and d-Ti₃C₂ MXene showed overpotential of 140 and 180 mV. This enhanced electrochemical performance was attributed to the synergistic effect of d-Ti₃C₂ and MoS₂ nanoballs. Tafel slope is considered to evaluate the HER kinetics information. Based on the results mentioned above, the enhanced HER kinetics of d-Ti₃C₂/MoS₂ results from its improved surface area that was increased from incorporating MoS₂ nanoballs on d-Ti₃C₂ MXene as well as higher intrinsic catalytic activity. The electronic synergy between Ti and Mo metal was proved to be more favorable for HER catalysis, in which one component facilitates the adsorption of H-containing intermediate and the second component completes the reaction by facilitating the migration of the adsorbed H to another site.

The smaller Tafel slope values indicated faster HER kinetics and enhanced HER activity. $d-Ti_3C_2/MoS_2$ nanocomposite exhibited a low Tafel slope of 75 mV dec⁻¹ compared to MoS₂ nanoballs (92 mV dec⁻¹) and $d-Ti_3C_2$ MXenee (98 mV dec⁻¹) as shown in **Figure 5b**. This outstanding electrochemical performance occurred because of the successful incorporation of MoS₂ nanoballs on $d-Ti_3C_2$ MXene, which increased the surface area as well as the electrical conductivity of the nanocomposite. **Figure 5c** compares overpotential values for $d-Ti_3C_2$ MXene, MoS₂ nanoballs, and $d-Ti_3C_2/MoS_2$ nanocomposite. $d-Ti_3C_2/MoS_2$ indicates the lowest overpotential of 45 mV, which indicates this material has shown good catalytic activity because of increased surface area. **Figure 5d** shows the catalytic durability curve of $d-d-Ti_3C_2/MoS_2$ after 1000 cycles. A negligible loss was observed after 1000 cycles which indicates our material was catalytically durable.

Figure 5. a) LSV, b) Tafel plot, c) Comparison of overpotential of of d-Ti₃C₂ MXene, MoS₂ nanoballs and d-Ti₃C₂/MoS₂ d) Durability curve of d-Ti₃C₂/MoS₂

Figure 6a-c shows the cyclic voltammetry profile of $d-Ti_3C_2$ MXene, MoS₂ nanoballs and $d-Ti_3C_2/MoS_2$ nanocomposite in the non-faradic region at different scan rates from 10-50 mV s⁻¹. **Figure 6d** shows a comparison plot of $d-Ti_3C_2$ MXene, MoS₂ nanoballs, and $d-Ti_3C_2/MoS_2$ nanocomposite at 10 mV s⁻¹. It was seen that $d-Ti_3C_2/MoS_2$ shows the highest current density of 7.2 mA, indicating that this material possesses a greater value of double-layer capacitance due to an increase in its area. **Figure 7a** shows the EIS pattern of all synthesized materials. The EIS patterns indicate lower charge transfers resistance of $d-Ti_3C_2/MoS_2$ among $d-Ti_3C_2$ and MoS₂ nanoballs. This occurred due to the better conductivity of $d-Ti_3C_2/MoS_2$, which is related to more active sites and greater charge transfer rate from the electrode to the electrolyte.

Figure 6. CV profile of a) d-Ti₃C₂, b) MoS₂ nanoballs c) d-Ti₃C₂/MoS₂ d) Comparison CV plot at 10 mV s⁻¹. Chronoamperometry was carried out to check the stability of d-Ti₃C₂/MoS₂. The test was conducted for 20 h at 10 mV s⁻¹ as shown in **Figure 7b**. The result indicates a slight loss after 20 h, which indicates good stability of d-Ti₃C₂/MoS₂.

Figure 4. a) EIS of d-Ti₃C₂ MXene, MoS₂ nanoballs and d-Ti₃C₂/MoS₂ b) Chronoamperometry of d-Ti₃C₂/MoS₂

4. CONCLUSION

In our work, we have synthesized d-Ti₃C₂/MoS₂ nanocomposite by hydrothermal approach. This material was tested for HER and showed an excellent overpotential of 45 mV compared to d-Ti₃C₂ MXene (98 mV) and MoS₂ nanoballs (92 mV) using 2M KOH. This outstanding catalytic activity was attributed to the synergistic effect of both MXene and MoS₂ nanoballs, where MoS₂ prevents restacking of MXene and increase surface area by successful incorporation. The material showed outstanding stability for 20 h. These obtained results open an avenue to fabricate efficient and cost-effective electrodes by simple hydrothermal strategy for practical electrochemical water splitting.

REFERENCES

[1] K. Li, J. Xu, C. Chen, Z. Xie, D. Liu, D. Qu, H. Tang, Q. Wei, Q. Deng, J.J.J.o.C. Li, J. Colloid Interface Sci. 582, 591-597. (2021)

[2] Q. Xu, J. Zhang, H. Zhang, L. Zhang, L. Chen, Y. Hu, H. Jiang, C.J.E. Li, *Energy Environ. Sci.* 14, 5228-5259. (2021).

[3] A.K. Ipadeola, A.K. Lebechi, L. Gaolatlhe, AB Haruna, M. Chitt, K. Eid, A.M. Abdullah, *KIJEC, Electrochem. Commun.* 136, 107207. (2022)

[4] W.-K. Chong, B.-J. Ng, L.-L. Tan, S.-P.J.E. Chai, Fuels, Energy Fuels, 36, 4250-4267. (2022)

[5] Y. Li, Z. Yin, M. Cui, X. Liu, J. Xiong, S. Chen, T.J.J.o.M.C.A. Ma, J. Mater. Chem A, 9, 2070-2092. (2021)

[6] Z. Zhu, J. Hao, H. Zhu, S. Sun, F. Duan, S. Lu, MJAFM Du, Advance Fiber. Mater, 3, 117-127. (2021)

[7] D.T. Tran, S. Prabhakaran, D.H. Kim, N. Hameed, H. Wang, N.H. Kim, JHJNE Lee, *Nano Energy*. 88, 106277. (2021)

[8] X. Ji, Y. Lin, J. Zeng, Z. Ren, Z. Lin, Y. Mu, Y. Qiu, J.J.N.c. Yu, Nat. Commun, 12, 1-13. (2021)

[9] Y. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia, T. Chen, Y. Bando, Y.-M. Kang, M.S.A. Hossain, Y.J.A.n. Sugahara, *ACS Nano*. 14, 4141-4152. (**2020**)

[10] J. Zhou, J. Lin, H. Sims, C. Jiang, C. Cong, J.A. Brehm, Z. Zhang, L. Niu, Y. Chen, YJAM Zhou, *Adv. Mater.* 32, 1906536. (2020)

[11] T. Dong, X. Zhang, P. Wang, H.-S. Chen, PJEA Yang, Electrochim. Acta, 338, 135885. (2020)

[12] M. Nemiwal, T.C. Zhang, D.J.I.J.o.H.E. Kumar, Int. J. Hydrog. Energy. 46, 21401-21418. (2021)

[13] Y. Tang, C. Yang, X. Xu, Y. Kang, J. Henzie, W. Que, YJAEM Yamauchi, MXene Nanoarchitectonics: Adv. Energy Mater. 12, 2103867. (2022)

[14] J. Qiao, L. Kong, S. Xu, K. Lin, W. He, M. Ni, Q. Ruan, P. Zhang, Y. Liu, *WJESM Zhang, Energy Stor. Mater.* 43, 509-530. (2021)

[15] X. Zhang, X. Zhang, P.J.J.o.E.C. Yang, 895, 115510. (2021)

[16] S. Riyajuddin, K. Azmi, M. Pahuja, S. Kumar, T. Maruyama, C. Bera, K.J.A.n. Ghosh, ACS Nano. 15 5586-5599. (2021)

[17] M. Naguib, M.W. Barsoum, Y.J.A.M. Gogotsi, Adv. Mater. 33, 2103393. (2021)

[18] X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren, H. Zhang, PNJPR Prasad, Phys. Rep. 848, 1-58. (2020)

[19] A. Bhat, S. Anwer, K.S. Bhat, M.I.H. Mohideen, K. Liao, A.J.n.D.M. Qurashi, 2D Mater. Appl. 5 1-21. (2021)

[20] J. Huang, Z. Li, Y. Mao, ZJNS Li, Nano Select. 2, 1480-1508. (2021)

[21] K. Ba, D. Pu, X. Yang, T. Ye, J. Chen, X. Wang, T. Xiao, T. Duan, Y. Sun, B.J.A.C.B.E. Ge, *Appl. Catal.* 317, 121755. (2022)

[22] H. Zhang, Z. Wang, Q. Zhang, F. Wang, Y.J.B. Liu, *Bioelectronics, Biosens. Bioelectron.* 124 184-190. (2019)
[23] Q. Kong, H. Zhang, Z. Yuan, J. Liu, L. Li, Y. Fan, G. Fan, BJASC Liu, *ACS Sustainable Chem. Eng.* 8 4755-4763. (2020)

[24] M. Alhabeb, K. Maleski, T. Mathis, A. Sarycheva, C. Hatter, S. Uzun, A. Levitt, Y. Gogotsi, Angew. *Chem. Int.* Ed. 57 5444-5448. (2018)

Received: 16th July 2022

Accepted: 21th October 2022