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ABSTRACT 
The multiple linear regression (MLR) was used to build the linear quantitative structure-property relationship (QSPR) model for 

the prediction of the molar diamagnetic susceptibility (χm) for 140 diverse organic compounds using the three significant 

descriptors calculated from the molecular structures alone and selected by stepwise regression method. Stepwise regression was 

employed to develop a regression equation based on 100 training compounds, and predictive ability was tested on 40 compounds 

reserved for that purpose. The stability of the proposed model was validated using Leave-One-Out cross-validation and 

randomization test. Application of the developed model to a testing set of 40 organic compounds demonstrates that the new model 

is reliable with good predictive accuracy and simple formulation. By applying MLR method we can predict the test set (40 

compounds) with Q2
ext of 0.9894 and average root mean square error (RMSE) of 2.2550. The model applicability domain was 

always verified by the leverage approach in order to propose reliable predicted data. The prediction results are in good agreement 

with the experimental values. 
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1. INTRODUCTION 
Quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs) are 

scientific fields in which the use of chemometric methods is of outstanding importance. Indeed, chemometric 

methods, as well as statistics and chemoinformatics, are the basic tools for finding mathematical meaningful 

relationships between the molecular structure and biological activities, physicochemical, toxicological, and 

environmental properties of chemicals. The diamagnetic susceptibility (χ) of compounds is an important 

physicochemical property. If a substance has no permanent magnetic dipole, but has one induced in it by an external 

field, this induced magnetic field will oppose the applied field. This effect is known as diamagnetism and is a 

universal property that is shown by most inorganic compounds. It is most perceptible when all electrons are paired, 

that is, when they have no permanent spin moment. For a diamagnetic substance χ is negative, small, independent of 

the magnetic field intensity, and independent of temperature. Molecules with a permanent magnetic dipole will behave 

like small bar magnets; they will align themselves with an applied field, thus reinforcing it. This effect is known as 

paramagnetism. Salts and certain complexes of transition elements, “odd” electron molecules like NO2, O2, and free 

radicals such as tri-phenyl methyl exhibit this effect, an effect sufficiently large to mask the underlying diamagnetism. 

For a paramagnetic substance χ is positive, small, independent of the magnetic field intensity, and decreases with 

increasing temperature. If the permanent magnetic dipoles in a substance are so close together as to interact and 

support each other, the result is a group or cooperative effect known as ferromagnetism. For a ferromagnetic substance 

χ is positive, large, and dependent on the magnetic field and temperature, and dependent on previous history. Beyond 

a certain temperature (the Curie point), magnetism drops and the material shows paramagnetic behavior. For an anti-

ferromagnetic substance  is small and positive, is dependent on previous history, and has complex temperature 

dependence. Up to a critical temperature, magnetization increases, then decreases past the transition temperature 

(known as the Néel point) as the material becomes diamagnetic.1 

When a material is placed in a magnetic field H, a magnetization M is induced in the material which is related 

to H by M = κH, where κ is called the volume susceptibility. Since H and M have the same dimensions, κ is 

dimensionless. A more useful parameter is the molar susceptibility χm, defined by:  

 

    (1) 

 

where Vm is the molar volume of the substance, M the molar mass, and ρ the mass density. When the cgs system is 

used, the customary unit for χm is cm3 mol-1; the corresponding SI unit is m3 mol-1. Substances with no unpaired 

electrons are called diamagnetic; they have negative values of χm. Their molar susceptibility varies only slightly with 

temperature. Substances with unpaired electrons, which are termed paramagnetic, have positive χm and show much 

stronger temperature dependence, varying roughly as 1/T.2 

Quantitative structure–property/activity relationships (QSPR/QSAR) are tools of modeling property/activity 

as defined by mathematical functions of molecular structure. The QSPR can be used to predict physicochemical 

properties of organic compounds by using theoretical descriptors. To develop a QSPR, molecular structures are often 

represented using molecular descriptors which encode much structural information. After the calculation of molecular 
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descriptors, linear methods, such as multiple linear regression (MLR), principal component regression (PCR) and 

partial least squares (PLS) or non-linear methods, i.e. neural networks (NN) and support vector machine (SVM) can 

be used in the development of a mathematical relationship between the structural descriptors and the property. There 

are many reports about the applications of different modeling approaches to predict the diamagnetic property of 

inorganic and organic compounds.3-11 

In our previous papers, we reported on the application of quantitative structure–property/activity relationships 

(QSPR/QSAR) techniques in the development of a new, simplified approach to prediction of compounds properties 

using different models.12-17 

Our goal here is to develop an accurate, simple, fast, and less expensive method for calculation of χm values. 

A stepwise regression (SR) procedure was used for selection of descriptors. Multiple linear regression (MLR) method 

is utilized to establish quantitative relationships between molar diamagnetic susceptibility and molecular descriptors. 

Compared with the previous work, the data set used in our investigation is more diverse and the model developed is 

more general and practical. The predictive power of the resulting model is demonstrated by testing them on unseen 

data that were not used during model generation. A physicochemical explanation of the selected descriptors is also 

given. 

 

2. MATERIAL AND METHODS 
The methodology applied in our study involved the following five steps: (i) collecting experimental data and splitting 

the compounds, for which the data was available, into a training set and a validation test set; (ii) molecular geometry 

optimization,(iii) calculating molecular descriptors for all compounds and selecting the optimal pool of the descriptors 

to be utilized in the QSPR model development; (iv) training and, simultaneously, internal validating the QSPR model, 

(v) externally validating the developed model with use of the validation test set. 

 

2.1 Data set 
All diamagnetic susceptibilities data of the present investigation were obtained from the CRC Handbook of Physics 

and Chemistry 2010.2Diamagnetic susceptibility range was from (-132.2×10-6) to (-30.50×10-6) cm3mol-1. A complete 

list (140 compounds) of the compound names and corresponding experimental diamagnetic susceptibilities are shown 

in Table1. The data set was randomly divided into two subsets: a training set of 100 compounds and a validation set of 

40 compounds. The training set was used to adjust the parameters of the MLR and the test set was used to evaluate its 

prediction ability. 

 

Table-1: Molecular Descriptors, Experimental , Predicted , residuals and percent 

relative error values for training and test sets 
NO. Name Sv 1Xv MR χm(Exp) χm(Pred) Residual %RE 

1 Ethylene oxide 3.71 1.08 13.40 30.50 29.87 0.63 -2.08 

2 Pyrazine 5.65 1.46 18.30 37.80 40.76 -2.96 7.82 

3 Cyclopropane 4.79 1.50 16.70 39.20 38.41 0.79 -2.01 

4 Methyloxirane 5.31 1.51 17.40 42.50 39.89 2.61 -6.14 

5 Pyrimidine 6.59 1.70 20.20 43.10 46.07 -2.97 6.90 

6 Furan 5.71 1.47 18.80 43.10 41.42 1.68 -3.90 

7 Furfural 7.22 1.92 21.54 47.20 50.26 -3.06 6.49 

8 Succinic anhydride 6.73 1.86 20.33 47.50 47.88 -0.38 0.80 

9 Pyridine 7.19 1.85 23.90 48.70 51.83 -3.13 6.43 

10 1,4-Cyclohexadiene 7.33 1.97 22.70 48.70 51.98 -3.28 6.74 

11 Cyclopentanone 7.71 2.09 22.50 51.60 53.42 -1.82 3.53 

12 1,4-Dioxane 7.41 2.16 22.09 52.20 53.22 -1.02 1.95 

13 1,2-Epoxybutane 7.27 2.05 22.80 54.80 52.72 2.08 -3.80 

14 Benzene 7.79 2.00 26.06 54.80 56.11 -1.31 2.38 

15 Morpholine 7.90 2.12 24.00 55.00 55.40 -0.40 0.72 

16 Cyclopentane 7.99 2.24 23.01 56.20 55.68 0.52 -0.93 

17 Thiophene 7.77 2.20 23.08 57.30 55.08 2.22 -3.88 

18 Cyclohexene 8.99 2.36 27.09 58.00 62.07 -4.07 7.01 

19 Fluorobenzene 7.90 2.10 26.27 58.40 57.39 1.01 -1.73 

20 Phenol  8.31 2.13 27.75 60.60 59.68 0.92 -1.52 

21 Furfuryl alcohol 7.82 2.07 26.50 61.00 57.17 3.83 -6.28 

22 Cyclohexanone 9.50 2.43 26.80 62.00 63.14 -1.14 1.84 

23 Aniline 8.79 2.20 30.00 62.40 63.09 -0.69 1.10 

24 Piperidine 8.98 2.51 29.10 64.20 65.36 -1.16 1.81 

25 Resorcinol  8.82 2.27 29.45 67.20 63.25 3.95 -5.88 

26 o-Nitroaniline 10.21 2.71 32.40 67.40 72.01 -4.61 6.84 

27 Styrene 10.39 2.61 33.99 68.20 72.89 -4.69 6.87 

28 o-Nitrophenol 9.73 2.64 35.08 68.90 73.31 -4.41 6.40 
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29 Tetrahydrofurfuryl alcohol 9.01 2.66 30.00 69.40 67.62 1.78 -2.56 

30 Chlorobenzene 9.33 2.48 30.86 69.50 67.23 2.27 -3.26 

31 m-Nitroaniline 10.21 2.70 33.80 69.70 73.29 -3.59 5.16 

32 Methylcyclopentane 9.59 2.70 31.10 70.20 69.87 0.33 -0.47 

33 m-Phenylenediamine 9.78 2.40 35.46 70.40 71.52 -1.12 1.59 

34 p-Phenylenediamine 9.78 2.40 35.46 70.70 71.52 -0.82 1.16 

35 Benzyl alcohol 9.90 2.58 32.87 71.80 70.88 0.92 -1.28 

36 Benzamide 10.30 2.65 34.64 72.00 73.79 -1.79 2.49 

37 m-Cresol  9.90 2.55 32.79 72.20 70.48 1.72 -2.38 

38 Anisole 9.90 2.52 31.17 72.20 68.73 3.47 -4.81 

39 p-Cresol  9.90 2.55 32.79 72.40 70.48 1.92 -2.65 

40 o-Phenylenediamine 9.78 2.41 35.46 72.50 71.57 0.93 -1.28 

41 p-Methylaniline 10.38 2.61 35.80 72.50 74.62 -2.12 2.92 

42 2,6-Dimethylpyridine 10.38 2.69 33.70 72.50 73.36 -0.86 1.18 

43 m-Nitrotoluene 10.81 2.91 35.20 72.70 77.41 -4.71 6.47 

44 o-Cresol 9.90 2.55 32.79 73.30 70.54 2.76 -3.77 

45 Cyclohexanol 10.10 2.80 32.40 73.40 72.74 0.66 -0.91 

46 Cycloheptane 11.18 2.82 32.21 73.90 74.22 -0.32 0.43 

47 N-Methylaniline 10.38 2.66 36.25 74.10 75.52 -1.42 1.92 

48 Salicylic acid 10.33 2.73 34.51 75.00 74.42 0.58 -0.78 

49 m-Chloroaniline 10.32 2.68 35.56 76.60 74.93 1.67 -2.18 

50 Benzeneacetonitrile 10.79 2.84 36.55 76.90 78.03 -1.13 1.47 

51 p-Xylene 10.99 2.82 36.14 77.00 77.73 -0.73 0.95 

52 Ethylbenzene 10.99 2.97 35.70 77.30 78.69 -1.39 1.80 

53 Methylcyclohexane 11.18 3.06 34.30 78.90 78.44 0.46 -0.58 

54 o-Chloroaniline 10.87 2.68 35.56 79.50 75.74 3.76 -4.73 

55 Isopropenylbenzene 11.62 3.01 38.42 80.00 82.56 -2.56 3.20 

56 p-Chlorotoluene 11.23 2.89 35.90 80.30 78.45 1.85 -2.30 

57 Methyl benzoate 11.41 2.98 37.59 81.60 81.13 0.47 -0.57 

58 p-Dichlorobenzene 10.78 2.96 35.67 81.70 78.23 3.47 -4.25 

59 o-Chlorotoluene 11.42 2.89 35.90 82.40 78.77 3.63 -4.40 

60 p-Toluic acid 11.41 3.00 37.86 82.40 81.59 0.81 -0.98 

61 m-Toluic acid 11.41 3.00 37.86 83.00 81.59 1.41 -1.69 

62 Indene 11.39 3.21 38.42 83.00 84.07 -1.07 1.28 

63 Phthalic acid 11.84 3.18 39.58 83.60 85.53 -1.93 2.31 

64 Isoquinoline 11.79 3.25 40.35 83.90 86.86 -2.96 3.52 

65 o-Toluic acid 11.41 3.01 37.86 84.30 81.65 2.65 -3.14 

66 Phenetole 11.50 3.11 35.92 84.50 80.90 3.60 -4.26 

67 Indole 11.70 2.99 37.15 85.00 81.21 3.79 -4.46 

68 N,N-Dimethylaniline 11.98 3.03 40.49 85.10 85.17 -0.07 0.08 

69 N-Ethylaniline 11.98 3.22 41.00 85.60 87.43 -1.83 2.14 

70 Paraldehyde 11.74 3.15 38.00 86.10 83.54 2.56 -2.97 

71 Methyl salicylate 11.93 3.12 39.28 86.60 84.76 1.84 -2.13 

72 Propylbenzene 12.59 3.47 40.30 89.10 89.91 -0.81 0.91 

73 Isopropylbenzene 12.59 3.35 40.25 89.50 88.78 0.72 -0.80 

74 Naphthalene 12.39 3.41 42.51 91.60 91.14 0.46 -0.50 

75 1,3,5-Trimethylbenzene 12.59 3.44 41.18 92.30 90.47 1.83 -1.98 

76 1-Naphthalenamine 13.38 3.61 43.90 92.50 95.72 -3.22 3.49 

77 Benzyl acetate 13.01 3.46 42.03 93.20 92.05 1.15 -1.24 

78 Ethyl benzoate 13.01 3.57 42.33 93.80 93.30 0.50 -0.53 

79 1-Naphthol 12.90 3.55 44.20 96.20 94.75 1.45 -1.50 

80 2-Naphthol 12.90 3.54 44.20 96.80 94.70 2.10 -2.17 

81 Safrole 14.01 3.75 43.60 97.50 97.60 -0.10 0.10 

82 2-Naphthalenamine 13.38 3.60 45.80 98.00 97.49 0.51 -0.52 

83 a-Pinene 14.78 3.92 43.65 100.70 100.27 0.43 -0.42 

84 1,2,4,5-Tetramethylbenzene 14.18 3.66 46.22 101.20 99.46 1.74 -1.72 

85 Dimethyl terephthalate 15.04 3.95 47.50 101.60 104.63 -3.03 2.98 

86 b-Pinene 14.78 4.00 43.65 101.90 101.01 0.89 -0.87 

87 2-Methylnaphthalene 13.99 3.82 47.55 102.70 101.95 0.75 -0.73 

88 p-Cymene 14.18 3.77 45.29 102.80 99.59 3.21 -3.13 

89 Camphor, (+) 15.29 4.08 47.20 103.00 105.85 -2.85 2.77 

90 Benzil 14.88 4.19 50.70 106.80 109.65 -2.85 2.67 

91 1-Chloronaphthalene 14.66 4.03 49.20 107.60 106.43 1.17 -1.09 

92 Acenaphthene 14.99 4.25 50.79 109.90 110.44 -0.54 0.49 

93 Acenaphthylene 15.38 4.15 50.27 111.60 109.55 2.05 -1.84 
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94 9,10-Anthracenedione 16.64 4.45 52.80 113.00 116.48 -3.48 3.08 

95 Acridine 16.38 4.54 56.06 118.80 120.07 -1.27 1.07 

96 Carbazole 16.56 4.48 54.50 119.90 118.27 1.63 -1.36 

97 1-Bromonaphthalene 16.79 4.72 55.10 123.60 121.38 2.22 -1.80 

98 Phenanthrene 16.99 4.82 58.96 127.60 126.22 1.38 -1.08 

99 1,2-Diphenylethane 18.18 4.87 60.40 127.80 129.74 -1.94 1.52 

100 Benzyl benzoate 18.61 5.12 62.20 132.20 134.38 -2.18 1.65 

 

Table-1: (continued) 
NO. Name Sv 1Xv MR χm(Exp) χm(Pred) Residual %RE 

1 Maleic anhydride 5.35 1.39 17.40 35.80 38.84 -3.04 8.48 

2 Cyclobutane 6.39 1.61 18.40 40.00 43.26 -3.26 8.15 

3 Pyrrole 6.19 1.76 20.82 48.60 46.68 1.92 -3.96 

4 Pyrrolidine 7.38 2.21 23.50 54.80 55.01 -0.21 0.38 

5 4-Methylpyridine 8.79 2.26 28.94 59.80 62.64 -2.84 4.75 

6 Cyclopentanol 8.50 2.58 28.00 64.00 64.25 -0.25 0.39 

7 p-Hydroquinone 8.82 2.27 29.45 64.70 63.25 1.45 -2.25 

8 Benzonitrile 9.19 2.38 31.80 65.20 67.07 -1.86 2.86 

9 Toluene 9.39 2.41 31.10 65.60 66.92 -1.32 2.02 

10 Salicylaldehyde 9.82 2.58 34.34 66.80 72.13 -5.33 7.98 

11 Cyclohexane 9.59 2.71 29.60 68.00 68.53 -0.53 0.77 

12 Pyrocatechol 8.82 2.28 29.45 68.20 63.30 4.90 -7.18 

13 2,4-Dimethylpyridine 10.38 2.68 33.84 71.30 73.40 -2.10 2.95 

14 m-Methylaniline 10.38 2.61 35.80 74.60 74.62 -0.02 0.02 

15 o-Methylaniline 10.38 2.62 35.80 74.90 74.67 0.23 -0.30 

16 m-Xylene 10.99 2.82 36.14 76.40 77.73 -1.33 1.74 

17 p-Chloroaniline 10.43 2.68 35.56 76.70 75.08 1.62 -2.11 

18 o-Xylene 10.99 2.83 36.14 77.70 77.79 -0.09 0.11 

19 o-Methoxyaniline 10.90 2.73 35.87 79.10 76.49 2.61 -3.30 

20 m-Chlorotoluene 11.03 2.89 35.90 79.70 78.18 1.52 -1.91 

21 (Chloromethyl)benzene 11.11 3.07 35.93 81.60 79.95 1.65 -2.02 

22 Benzeneacetic acid 11.41 3.05 37.37 82.40 81.56 0.84 -1.02 

23 2,4,6-Trimethylpyridine 11.98 3.10 38.74 83.10 84.18 -1.08 1.29 

24 Terephthalic acid 11.84 3.18 39.58 83.50 85.47 -1.97 2.36 

25 m-Dichlorobenzene 11.51 2.96 35.67 84.10 79.23 4.87 -5.79 

26 Isophthalic acid 11.84 3.18 39.58 84.60 85.47 -0.87 1.03 

27 Cyclooctane 12.45 3.25 36.81 85.30 84.34 0.96 -1.13 

28 Quinoline 11.79 3.26 39.98 86.10 86.59 -0.49 0.57 

29 p-Bromotoluene 11.88 3.30 38.72 88.70 85.87 2.83 -3.19 

30 d-Limonene 13.75 3.81 45.61 98.00 99.71 -1.71 1.75 

31 Butylbenzene 14.18 3.97 44.90 100.70 101.12 -0.42 0.41 

32 Isobutylbenzene 14.18 3.89 44.85 101.70 100.34 1.36 -1.34 

33 tert-Butylbenzene 14.18 3.66 44.72 101.80 98.08 3.72 -3.65 

34 1-Methylnaphthalene 13.99 3.82 47.55 102.90 102.00 0.90 -0.87 

35 N,N-Diethylaniline 15.18 4.18 49.98 107.90 109.29 -1.39 1.29 

36 Diphenylmethane 16.59 4.53 54.40 116.00 118.66 -2.66 2.29 

37 Diphenylacetylene 16.99 4.57 54.70 116.00 119.89 -3.89 3.36 

38 Hexamethylbenzene 17.38 4.58 56.31 122.50 122.05 0.45 -0.37 

39 Diethyl phthalate 18.23 4.91 58.61 127.50 128.47 -0.97 0.76 

40 Anthracene 17.75 4.81 58.96 129.80 127.21 2.59 -2.00 

 

2.2 Descriptor generation 
The molecular structures of all compounds were drawn into the HyperChem7.5 program (Hypercube, Inc., 

Gainesville, 2002) and pre-optimized using MM+ molecular mechanics method (Polak–Ribiere algorithm). The final 

geometries of the minimum energy conformation were obtained by more precise optimization with the semi-empirical 

PM3 method, applying a root mean square gradient limit of 0.01 Kcal/(mol. Å) as a stopping criterion for optimized 

structures. Then a total of 1195 molecular descriptors were calculated for each polymer by the DRAGON software 

(Taletesrl, Milan, 2006) on the minimal energy conformations. These descriptors are classified as (a) 0D-constitutional 

(atom and group counts); (b) 1D-functional groups and atom centered fragments; (c) 2D-topological, BCUTs, walk 

and path counts, autocorrelations, connectivity indices, information indices, topological charge indices, and 

eigenvalue-based indices; and (d) 3D-Randic molecular profiles from the geometry matrix, geometrical, WHIM, and 

GETAWAY descriptors. In order to reduce redundant and non-useful information, constant or near constant values 

and descriptors found to be highly correlated pair-wise (one of any two descriptors with a correlation greater than 
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0.99)18 were excluded in a pre-reduction step, therefore 145 molecular descriptors underwent subsequent variable 

selection. 

 

2.3 Stepwise regression for descriptor selection 
After the calculation of molecular descriptors, a stepwise regression routine implemented in SPSS 15.0 software 

package (SPSS Inc., 2006, Chicago, IL) was used to develop the linear QSPR model using calculated descriptors. The 

selection of relevant descriptors, which relate the molar diamagnetic susceptibility to the molecular structure, is an 

important step to construct a predictive model. In order to select the subset of descriptors that best explain compounds 

χm, we have used stepwise regression.19-21The stepwise regression was applied to the input set of 145 molecular 

descriptors for each chemical of the studied data sets and the related response, in order to extract the best set of 

molecular descriptors, which are, in combination, the most relevant variables in modeling the response of the training 

set chemicals. Stepwise regression(SR), included in the SPSS software, was used for variables selection (based on the 

training set). Finally we obtained a three significant descriptor subset, which keeps most interpretive information for 

χm. A total of three descriptors were calculated for each organic in the data set. The selected descriptors are Ghose-

Crippen molar refractivity, MR (Steric molecular properties), 22 valence connectivity index chi-1, 1χv (topological 

descriptors) 23 and sum of atomic vander Waals volumes (scaled on Carbon atom),Sv (constitutional descriptors).24 

 

2.4 Linear modeling 
The general purpose of multiple regressions is to quantify the relationship between several independent or predictor 

variables and a dependent variable. A set of coefficients defines the single linear combination of independent variables 

(molecular descriptors) that best describes molar diamagnetic susceptibility. The molar diamagnetic susceptibility 

value for each compound would then be calculated as a composite of each molecular descriptor weighted by the 

respective coefficients. A multi-linear model can be represented as:  

 

kk3322110 xb...xbxbxbby                   (2) 

 

Where k is the number of independent variables (descriptors), b1, . . . ,bk are the regression coefficients and y is the 

dependent variable (χm). Regression coefficients represent the independent contributions of each calculated molecular 

descriptor. The algebraic MLR model is defined in Eq. (2) and in matrix notation: 

 

y = Xb + e                                                                 (3) 

When X is of full rank the least squares solution is: yXX)(Xb
T1Tˆ where b̂  is the estimator for the regression 

coefficients in b̂ . 

A MLR model was developed for organic compounds using The Unscrambler version 9.7 software (CAMO 

Software AS, 2007; Norway). MLR model was constructed with remaining descriptors based on stepwise feature 

selection. The MLR model was built using a training set and validation using an external prediction set. MLR 

techniques based on least-squares procedures are very often used for estimating the coefficients involved in the model 

equation.25 

 

2.5 Validation of the model 
Model validation is of crucial importance to QSPR modeling. The training and predictive capability of a QSPR model 

should be tested through model validation.26-29 

Leave one out cross validation (LOO-CV) is one of the QSPR model internal validation. The predictability of 

the QSPR model is determined using the LOO-CV method. The cross validated explained variance (  is 

calculated by the following equation: 

 

      (4) 

 

Where yi,  and  are, respectively, the measured, predicted, and averaged (over the entire training set) values of the 

dependent variable, respectively; the summations cover all the compounds in the training set. The LOO-CV approach 

is not sufficient to assess robustness and predictivity. The QSPR model developed using only training set chemicals is 

then applied to the external validation set chemicals to verify, more reliably, the predictive ability of the model. 

The formula for the calculation of   is: 

 

(5) 
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Where  and   are respectively the measured and predicted (over the test set) values of the dependent variable, and 

 is the averaged value of the property for the training set; the summations cover all the compounds in the validation 

set. The Q2 value is good tests for evenly distributed data, but they are not always reliable for unevenly distributed 

datasets; instead RMSEs (Root Mean Squared Errors)provide a more reliable indication of the fitness of the model, 

independently of the applied splitting. Other useful parameter to be considered are the RMSEs calculated on different 

sets: on training (RMSEV) and prediction (RMSEP). RMSE is calculated as in Eq. (6): 

 

(6) 

 

Where  and  are respectively the measured and predicted values of the property; n is the number of compounds in 

each set of data. 

Another method for validation of the model is randomization testing or Y-scrambling. Randomization testing 

is a technique for checking the robustness of a QSPR model and the statistical significance of the estimated predicted 

power. In this test, the dependent variable vector (χm), Y-vector, is randomly shuffled and a new QSPR model is 

developed using the original independent variable matrix. The process is repeated several times. It is expected that the 

resulting QSPR models will generally have low R2, low and high RMSE values. If the new models developed 

from the data set with randomized responses have significantly lower R2 and Q2 than the original model, then this is 

strong evidence that the proposed model is well founded, and not just the result of chance correlation. In contrast, if all 

the QSPR models obtained in the Y-randomization test have relatively high R2 and , then it implies that, for the 

given data set, the current modeling method is unable to give an acceptable QSPR model.30,31 

 

2.6 Applicability domain of the model 
A crucial problem of a QSPR model is the applicability domain (AD).As even a robust, significant and validated 

QSPR cannot be expected to reliably predict the modeled property for the entire universe of chemicals, its domain of 

application must be defined, and the predictions for only those chemicals that fall in this domain can be considered 

reliable. The chemical domain of applicability is a theoretical region in the space defined by the modeled response and 

the descriptors of the model, for which a given QSPR should make reliable predictions. This region is defined by the 

nature of the chemicals in the training set, and can be characterized in various ways. Away of defining the AD of a 

QSPR model is according to the leverage of a compound. The leverage (h) of a compound measures its influence on 

the model.32,33 The leverage of a compound in the original variable space is defined as: 

 

(7) 

 

Where theX is the model matrix derived from the training set descriptor values and the leverage values of training set 

are diagonal elements of the Hat or Influence matrix H ( . The leverage values are always between 0 and 

1. The warning leverage h* is defined as follows: 

 

  (8) 

 

Where n is the number of training set compounds and p' is the number of model parameters plus one.Observations 

with standardized residuals greater than (-2; +2) range, which lie outside the horizontal reference lines on the plot, are 

outlier's responses in The Unscrambler 9.7 

 

Standardized residual (SRi) for each sample is calculated as in Eq. (9): 

 

n
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yy
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)ˆ(        (9) 

 

Where  and  are respectively the measured and predicted values of the property; n is the number of compounds in 

each set of data. 

In the standardized residuals plot all values are within the (-2; +2) range, which confirms that there are no outliers. 

Furthermore, there is no clear pattern in the residuals, so nothing seems to be wrong with the model. To 

visualize the AD of a QSPR model, the plot of standardized residuals versus leverage values (h) (Williams plot) can 

be used for an immediate and simple graphical detection of both the response outliers and structurally influential 

chemicals in a model (h>h*).Samples with high leverages have a stronger influence on the model than other samples; 
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they may or may not be outliers, but they are influential. An influential outlier (high residual + high leverage) is the 

worst case; it can however easily be detected using an influence plot. Leverages are useful for the detection of samples 

which are far from the center within the space described by the model. If a sample has a very large leverage, it may be 

different from the rest and can be considered to be an outlier. Large leverage indicates a high influence on the model. 

 

3. RESULTS AND DISCUSSION 

 
3.1 MLR analysis 
The software package used for conducting MLR analysis was Unscrambler 9.7. Multiple linear regression (MLR) 

analysis has been carried out to derive the best QSPR model. The MLR technique was performed on the molecules of 

the training set shown in Table-1:. After regression analysis, a few suitable models were obtained among which the 

best model was selected and presented in Eq. (10). A small number of molecular descriptors (SV, 1 vand MR) 

proposed were used to establish a QSPR model. Multiple linear regression analysis provided a useful equation that can 

be used to predict theχm of organic compound based upon these parameters. The best equation obtained for the molar 

diamagnetic susceptibility of the organic compounds is:     

 
1 v            (10) 

 

2915.341 

 

Where n is the number of compounds used for regression, R2 is the squared correlation coefficient, is the adjusted 

squared correlation coefficient,  is the cross-validated squared correlation coefficient, s is the standard error of the 

regression, and F is the Fisher ratio for the regression. The squared correlation coefficient, R2=0.9892, is a measure of 

the fit of the regression model. Correspondingly, it represents the part of the variation in the experimental data that is 

explained by the model. The squared correlation coefficient values closer to 1 represents the better fit of the model. 

Eq. (10) has an adjusted R2 value of 0.98880, which indicates very good agreement between the correlation and the 

variation in the data. The cross-validated squared correlation coefficient =0.0.988359 illustrates the robustness 

and stability of the model by focusing on the sensitivity of the model to the elimination of any single data point. The s 

is the standard error measured by the error mean square, which expresses the variation of the residuals or the variation 

about the regression line. Thus, the standard error measures the model error. In general, the larger the magnitude of the 

F ratio, the better the model predicts the property values in the training set. The large F ratio of 2915.341 indicates that 

Eq. (10) does an excellent job of predicting the χm values of the training set. The F-test reflects the ratio of the 

variance explained by the model and the variance due to the error in the model, and high values of the F-test indicate 

the model is statistically significant. Positive values in the regression coefficients indicate that the indicated descriptor 

contributes positively to the value of χm. In other words, increasing the Sv, 1χvandMR will increase absolute value 

(more negative) χm of the organic compounds. The predicted values of χm, residuals and the percent relative errors 

(%RE) of prediction obtained by the MLR method are presented in Table-1:. The plot of predicted χm versus 

experimental χm and the residuals (experimental χm - predicted χm) versus experimental χm values, obtained by the 

MLR modeling, and the random distribution of residuals about zero mean are shown in Figure1. 

 
Fig-1: Plot of predicted χm and residuals estimated by MLR modeling versus experimental χm of training and test sets 

The distributions of residuals for the whole dataset are also shown graphically in Figure1.The predicted values are in 

good agreement with the experimental values. The robustness of each model was expressed by the cross-validated 

(leave-one-out technique, LOO) validation coefficient ( ) and the root mean square errors of LOO cross validation 

(RMSECV). Successfully validated QSPR model with confirmed predictive abilities was used to predict χm for all 40 

compounds. The internal predictive capability of a model was evaluated by leave-one-out cross-validation
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 on the training set, and the predictive capability of a model on external test set can be expressed by

.Moreover, both useful parameters the root means square error (RMSE) and the average percent relative error 

( ) calculated on both the training and test sets were employed to evaluate the performance of the developed 

model (see Table-2). The statistical results are listed in Table-2. 

 
Table-2:The main statistical parameters of the obtained MLR model 

Statistical parameters Training set Test set 

N 100 40 

R2 0.9892 - 

 0.9888 - 

 0.9884 - 

 - 0.9894 

RMSE 2.2246 2.2550 

 0.1217 0.3333 

 

The model was subsequently validated using the response permutation test, also known as Y-scrambling. This 

procedure involves fitting several models, on the same dependent variables but on a permutated response. It gave the 

following results: the random models, performed using a scrambled order of the χm values, were found to have 

significantly lower R2and and higher RMSE than the original model (R2 range: 0.0013 – 0.0239;  range: 

0.0003-0.0205; RMSE range: 21.0931-28.4233) corroborating the statistical reliability of the actual model. 

To visualize the AD of a QSPR model, the plot of standardized residuals versus leverage values (h) (the 

Williams plot) can be used for an immediate and simple graphical detection of both the response outliers and 

structurally influential chemicals in a model. In the Williams plot for AD (see Fig. 2), sample 98 (Phenanthrene) in the 

training set is to the right of the vertical line, which indicate it has slightly high leverage value (h>h*=0.12) and low 

standardized residual, it is belong to the model AD. Samples 26 (o-Nitroaniline), 27 (Styrene), 43 (m-Nitrotoluene) in 

the training set and 10 (Salicylaldehyde), 12 (Pyrocatechol), 25 (m-Dichlorobenzene) in the test set are outliers, 

indicated by their position above and below the horizontal reference lines, but they have low leverage values. 

Sample10 (Salicylaldehyde) is wrongly predicted, but in this case it belongs to the AD of the model because in this 

area there are three compounds belong to the training set. As can be found there is no influential chemical in the test 

set used in this study. 

 
Fig-2: Williams plot for the model with four variables. The χm values for the training and test set chemicals are labeled 

differently, the response outliers and structurally influential chemicals are numbered. The solid lines are, respectively, the  

limit and the warning value of hat (h* = 0.12). 

Chemicals 12 and 25 are wrongly predicted, but in this case they belong to the model AD, being within the cutoff 

value of Hat (h*).This erroneous prediction could probably be attributed to wrong experimental data rather than to 

molecular structure. 

3.2 Interpretation of descriptors 
The first selected significant descriptor involved in the Eq. (10) is sum of atomic vander Waals volumes (scaled on 

carbon atom), SV. This parameter is a measure of the size of a molecule. The constitutional descriptors depend on 
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atomic constitution of the chemical structure (molecule). They also include the descriptors related to the types of 

bonds and the presence of rings in the molecule and etc. The vander Waals radius, rw, of an atom is the radius of an 

imaginary hard sphere which can be used to model the atom for many purposes. The vander Waals volume, Vw, also 

called the atomic volume or molecular volume, is the atomic property most directly related to the vander Waals radius. 

It is the volume "occupied" by an individual atom (or molecule). The vander Waals volume may be calculated if the 

vander Waals radii (and, for molecules, the inter-atomic distances and angles) are known. For a spherical single atom, 

it is the volume of a sphere whose radius is the vander Waals radius of the atom: 

 

(11) 

 

For a molecule, it is the volume enclosed by the vander Waals surface. The vander Waals volume of a molecule is 

always smaller than the sum of the vander Waals volumes of the constituent atoms: the atoms can be said to "overlap" 

when they form chemical bonds. The vander Waals volume of an atom or molecule may also be determined by 

experimental measurements on gases, notably from the vander Waals constant (b), the polarizability ( ) or the molar 

refractivity (MR). In all three cases, measurements are made on macroscopic samples and it is normal to express the 

results as molar quantities. To find the vander Waals volume of a single atom or molecule, it is necessary to divide by 

the Avogadro constant (NA).34When the size of atomic vander Waals volume a molecule increases the χm of that 

molecule increases. In other words, the molar diamagnetic susceptibility of a molecule increases when its size 

increases. 

The second selected significant descriptor involved in the Eq. (10) is first order valence connectivity (1χv).As 

the name suggests, topological descriptors consider the topology of a molecule. That is, in the most general case, only 

the connections between the atoms in a hydrogen suppressed molecule, effectively converting it into a mathematical 

graph. Certain topological descriptors consider the type or certain properties of atoms involved in the connections as 

weights. Topological descriptors characterize features such as path lengths and connectivity. 

Topological molecular descriptors calculated from the vertex degree of the atoms in the H-depleted molecular graph. 

Hall and Kier 23,35 have developed molecular connectivity indices (Chi) that reflect the atom identities, 

bonding environments and number of bonding hydrogen's. These Kier indices are consequently useful in a wider 

variety of applications. Molecules that are drawn without hydrogen atoms can be decomposed into fragments of length 

m, which may be divided into different categories. Hall and Kier defined four series of fragment categories: Path, 

Cluster, Path/Cluster, and Ring. The spread and numbers of fragment membership for each category is determined by 

molecule connectivity. Hall and Kier defined groups of Chi (χ) and ChiV (χv) indices based on these fragment 

categories, also incorporating information about the bonding environment. Molecular graph can be denoted by G and 

having v1, v2, v3,. . .,vn as its vertices. The connectivity index χ=χ (G) of a graph G is defined by Randic36as under: 

 

    (12) 

 

Where δi and δj are the valence of a vertex i and j, equal to the number of bonds connected to the atoms i and j, in G. 

In the case of hetero-systems the connectivity is given in terms of valence delta values 
v

i  and 
v

j  of atoms i and j 

and is denoted by
v
. This version of the connectivity index is called the valence connectivity index and is defined 

36
as under: 

   (13) 

 

where the sum is taken over all bonds i–j of the molecule. Valence delta values are given by the following expression: 
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Where Zi is the atomic number of atom i, 
v

iZ  is the number of valence electron of the atom i and Hi is the number of 

hydrogen atoms attached to atom i. Now-a-days, the connectivity and the valence connectivity indices expressed by 

Eq.(12)and (13) are termed as first-order connectivity and first-order valence connectivity indices, respectively. The 

molecular connectivity index is a good descriptor of molecular bulk. 37, 38The compounds with the highest first-order 

valence connectivity indices have the highest molar diamagnetic susceptibility. The results indicate that the first order 

valence connectivity increases as χm increases. With increasing the number of atoms and the number of valence 
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electron of the atom in compounds the molecular weight and intermolecular forces increases. Finally with increasing 

the first valence connectivity index χm increases.  

The third descriptor in the QSPR model is molar refractivity (MR).The molar refractivity is a constitutive-

additive property calculated by the Lorenz-Lorentz formula: 

 

  (15) 

 

Where M is the molecular weight, n is the refraction index and ρ the density, and its value depends only of the 

wavelength of the light used to measure the refraction index.39For a radiation of infinite wavelength, the molar 

refractivity represents the real volume of the molecules and its polarizability. Then, the molar refractivity is related, 

not only to the volume of the molecules but also to the London dispersive forces that act in the intermolecular 

interaction. The atomic contribution to molecular refractivity calculated by Ghose and Crippen method. Ghose and 

Crippen defined 110 atom types, representing most commonly occurring atomic states of carbon, hydrogen, oxygen, 

nitrogen, halogens, and sulphur in organic molecules to split the molar refractivity.40,41 They stated that this 

classification partially differentiates the polarizing effects of heteroatom and the effect of overlapping with non-

hydrogen atoms, although they accepted that this classification might be weak in differentiating the conjugation 

effects. The authors stated that the classification may not completely cover all organic molecules, and that addition of 

atom types is always feasible. They assumed that the sum of the atomic values (ai) is the molecular value of the molar 

refractivity (Eq.(16)): 

 

     (16) 

 

The results indicate that the molar refractivity increases as χm increases. Finally we see the SV, 1Xv and MR have the 

additive atomic relationships. As molar diamagnetic susceptibility is essentially an additive property. According to Eq. 

(1), the selected significant descriptors are interpretable and meaningful. 

 

4. CONCLUSION 
The herein presented QSPR three-parameter model allows the prediction of molar diamagnetic susceptibilities of 

structurally diverse cyclic and aromatic compounds with average percent relative error of 0.33%. The model is 

theoretically justified and provides significant additional insight into the relationship between the structure and the 

molar diamagnetic susceptibilities of the compounds. The aim of this work is the development, using theoretical 

molecular descriptors, and the proposal of externally validated general QSPR models for the prediction of molar 

diamagnetic susceptibilities for a wide and heterogeneous set of organic compounds. The great advantage of 

theoretical descriptors is that they can be calculated homogeneously by defined software for all chemicals, even those 

not yet synthesized, the only need being a hypothesized chemical structure. The results indicate that the stepwise 

regression (SR) is a very effective variable selection approach for QSPR analysis. Multiple linear regression (MLR) 

has been used for structure–property relationship analysis for a set of 140 organic compounds. The results obtained 

from this study indicate that three descriptors, SV, 1χvand MR play an important role on the molar diamagnetic 

susceptibility of organic structures. Application of the developed model to a testing set of 40 compounds demonstrates 

that the new model is reliable with good predictive accuracy and simple formulation. Since the QSPR was developed 

on the basis of theoretical molecular descriptors calculated exclusively from molecular structure, the proposed model 

could potentially provide useful information about the χm of organic compounds. This procedure allowed us to achieve 

a precise and relatively fast method for determination of χm of different series of organic compounds and to predict 

with sufficient accuracy the χm of new organic derivatives. The macroscopic (bulk) activities/properties of chemical 

compounds clearly depend on their microscopic (structural) characteristics. Development of quantitative structure 

property/ activity relationships (QSPR/QSAR) on theoretical descriptors is a powerful tool not only for prediction of 

the chemical, physical and biological properties/activities of compounds, but also for deeper understanding of the 

detailed mechanisms of interactions in complex systems that predetermine these properties/activities. 
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